MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashwwlksnext Structured version   Visualization version   GIF version

Theorem hashwwlksnext 29830
Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
hashwwlksnext ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦𝑌 (♯‘{𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤,𝐺   𝑦,𝑀   𝑥,𝑋   𝑦,𝐺   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝑀(𝑥,𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem hashwwlksnext
StepHypRef Expression
1 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
2 wwlksnfi 29822 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
3 ssrab2 4053 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)
4 ssfi 9182 . . . 4 (((𝑁 WWalksN 𝐺) ∈ Fin ∧ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
52, 3, 4sylancl 586 . . 3 ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
61, 5eqeltrid 2837 . 2 ((Vtx‘𝐺) ∈ Fin → 𝑌 ∈ Fin)
7 wwlksnextprop.x . . . . 5 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8 wwlksnfi 29822 . . . . 5 ((Vtx‘𝐺) ∈ Fin → ((𝑁 + 1) WWalksN 𝐺) ∈ Fin)
97, 8eqeltrid 2837 . . . 4 ((Vtx‘𝐺) ∈ Fin → 𝑋 ∈ Fin)
10 rabfi 9270 . . . 4 (𝑋 ∈ Fin → {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin)
119, 10syl 17 . . 3 ((Vtx‘𝐺) ∈ Fin → {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin)
1211adantr 480 . 2 (((Vtx‘𝐺) ∈ Fin ∧ 𝑦𝑌) → {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin)
13 wwlksnextprop.e . . . 4 𝐸 = (Edg‘𝐺)
147, 13, 1disjxwwlkn 29829 . . 3 Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
1514a1i 11 . 2 ((Vtx‘𝐺) ∈ Fin → Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
166, 12, 15hashrabrex 15830 1 ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦𝑌 (♯‘{𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  {crab 3413  wss 3924  {cpr 4601  Disj wdisj 5084  cfv 6528  (class class class)co 7400  Fincfn 8954  0cc0 11122  1c1 11123   + caddc 11125  chash 14338  lastSclsw 14569   prefix cpfx 14677  Σcsu 15691  Vtxcvtx 28909  Edgcedg 28960   WWalksN cwwlksn 29742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-disj 5085  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-oadd 8479  df-er 8714  df-map 8837  df-pm 8838  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-oi 9517  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-hash 14339  df-word 14522  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493  df-sum 15692  df-wwlks 29746  df-wwlksn 29747
This theorem is referenced by:  rusgrnumwwlks  29890
  Copyright terms: Public domain W3C validator