MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashwwlksnext Structured version   Visualization version   GIF version

Theorem hashwwlksnext 28022
Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
hashwwlksnext ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦𝑌 (♯‘{𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤,𝐺   𝑦,𝑀   𝑥,𝑋   𝑦,𝐺   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝑀(𝑥,𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem hashwwlksnext
StepHypRef Expression
1 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
2 wwlksnfi 28014 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
3 ssrab2 4007 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)
4 ssfi 8873 . . . 4 (((𝑁 WWalksN 𝐺) ∈ Fin ∧ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
52, 3, 4sylancl 589 . . 3 ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
61, 5eqeltrid 2843 . 2 ((Vtx‘𝐺) ∈ Fin → 𝑌 ∈ Fin)
7 wwlksnextprop.x . . . . 5 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8 wwlksnfi 28014 . . . . 5 ((Vtx‘𝐺) ∈ Fin → ((𝑁 + 1) WWalksN 𝐺) ∈ Fin)
97, 8eqeltrid 2843 . . . 4 ((Vtx‘𝐺) ∈ Fin → 𝑋 ∈ Fin)
10 rabfi 8924 . . . 4 (𝑋 ∈ Fin → {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin)
119, 10syl 17 . . 3 ((Vtx‘𝐺) ∈ Fin → {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin)
1211adantr 484 . 2 (((Vtx‘𝐺) ∈ Fin ∧ 𝑦𝑌) → {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin)
13 wwlksnextprop.e . . . 4 𝐸 = (Edg‘𝐺)
147, 13, 1disjxwwlkn 28021 . . 3 Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
1514a1i 11 . 2 ((Vtx‘𝐺) ∈ Fin → Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
166, 12, 15hashrabrex 15413 1 ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦𝑌 (♯‘{𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2111  wrex 3063  {crab 3066  wss 3880  {cpr 4557  Disj wdisj 5032  cfv 6397  (class class class)co 7231  Fincfn 8646  0cc0 10753  1c1 10754   + caddc 10756  chash 13920  lastSclsw 14141   prefix cpfx 14259  Σcsu 15273  Vtxcvtx 27111  Edgcedg 27162   WWalksN cwwlksn 27934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-inf2 9280  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-disj 5033  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-se 5524  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-isom 6406  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-oadd 8226  df-er 8411  df-map 8530  df-pm 8531  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-sup 9082  df-oi 9150  df-dju 9541  df-card 9579  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-n0 12115  df-z 12201  df-uz 12463  df-rp 12611  df-fz 13120  df-fzo 13263  df-seq 13599  df-exp 13660  df-hash 13921  df-word 14094  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823  df-clim 15073  df-sum 15274  df-wwlks 27938  df-wwlksn 27939
This theorem is referenced by:  rusgrnumwwlks  28082
  Copyright terms: Public domain W3C validator