![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashwwlksnext | Structured version Visualization version GIF version |
Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.) |
Ref | Expression |
---|---|
wwlksnextprop.x | ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
wwlksnextprop.e | ⊢ 𝐸 = (Edg‘𝐺) |
wwlksnextprop.y | ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
Ref | Expression |
---|---|
hashwwlksnext | ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnextprop.y | . . 3 ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} | |
2 | wwlksnfi 29710 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
3 | ssrab2 4073 | . . . 4 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺) | |
4 | ssfi 9191 | . . . 4 ⊢ (((𝑁 WWalksN 𝐺) ∈ Fin ∧ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) | |
5 | 2, 3, 4 | sylancl 585 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
6 | 1, 5 | eqeltrid 2833 | . 2 ⊢ ((Vtx‘𝐺) ∈ Fin → 𝑌 ∈ Fin) |
7 | wwlksnextprop.x | . . . . 5 ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) | |
8 | wwlksnfi 29710 | . . . . 5 ⊢ ((Vtx‘𝐺) ∈ Fin → ((𝑁 + 1) WWalksN 𝐺) ∈ Fin) | |
9 | 7, 8 | eqeltrid 2833 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → 𝑋 ∈ Fin) |
10 | rabfi 9287 | . . . 4 ⊢ (𝑋 ∈ Fin → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) |
12 | 11 | adantr 480 | . 2 ⊢ (((Vtx‘𝐺) ∈ Fin ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) |
13 | wwlksnextprop.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
14 | 7, 13, 1 | disjxwwlkn 29717 | . . 3 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
15 | 14 | a1i 11 | . 2 ⊢ ((Vtx‘𝐺) ∈ Fin → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) |
16 | 6, 12, 15 | hashrabrex 15797 | 1 ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 {crab 3428 ⊆ wss 3945 {cpr 4626 Disj wdisj 5107 ‘cfv 6542 (class class class)co 7414 Fincfn 8957 0cc0 11132 1c1 11133 + caddc 11135 ♯chash 14315 lastSclsw 14538 prefix cpfx 14646 Σcsu 15658 Vtxcvtx 28802 Edgcedg 28853 WWalksN cwwlksn 29630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-oi 9527 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-word 14491 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 df-wwlks 29634 df-wwlksn 29635 |
This theorem is referenced by: rusgrnumwwlks 29778 |
Copyright terms: Public domain | W3C validator |