Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashwwlksnext | Structured version Visualization version GIF version |
Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.) |
Ref | Expression |
---|---|
wwlksnextprop.x | ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
wwlksnextprop.e | ⊢ 𝐸 = (Edg‘𝐺) |
wwlksnextprop.y | ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
Ref | Expression |
---|---|
hashwwlksnext | ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnextprop.y | . . 3 ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} | |
2 | wwlksnfi 28014 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
3 | ssrab2 4007 | . . . 4 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺) | |
4 | ssfi 8873 | . . . 4 ⊢ (((𝑁 WWalksN 𝐺) ∈ Fin ∧ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) | |
5 | 2, 3, 4 | sylancl 589 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
6 | 1, 5 | eqeltrid 2843 | . 2 ⊢ ((Vtx‘𝐺) ∈ Fin → 𝑌 ∈ Fin) |
7 | wwlksnextprop.x | . . . . 5 ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) | |
8 | wwlksnfi 28014 | . . . . 5 ⊢ ((Vtx‘𝐺) ∈ Fin → ((𝑁 + 1) WWalksN 𝐺) ∈ Fin) | |
9 | 7, 8 | eqeltrid 2843 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → 𝑋 ∈ Fin) |
10 | rabfi 8924 | . . . 4 ⊢ (𝑋 ∈ Fin → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) |
12 | 11 | adantr 484 | . 2 ⊢ (((Vtx‘𝐺) ∈ Fin ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) |
13 | wwlksnextprop.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
14 | 7, 13, 1 | disjxwwlkn 28021 | . . 3 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
15 | 14 | a1i 11 | . 2 ⊢ ((Vtx‘𝐺) ∈ Fin → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) |
16 | 6, 12, 15 | hashrabrex 15413 | 1 ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∃wrex 3063 {crab 3066 ⊆ wss 3880 {cpr 4557 Disj wdisj 5032 ‘cfv 6397 (class class class)co 7231 Fincfn 8646 0cc0 10753 1c1 10754 + caddc 10756 ♯chash 13920 lastSclsw 14141 prefix cpfx 14259 Σcsu 15273 Vtxcvtx 27111 Edgcedg 27162 WWalksN cwwlksn 27934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-inf2 9280 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-pre-sup 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-disj 5033 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-se 5524 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-isom 6406 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-oadd 8226 df-er 8411 df-map 8530 df-pm 8531 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-sup 9082 df-oi 9150 df-dju 9541 df-card 9579 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-div 11514 df-nn 11855 df-2 11917 df-3 11918 df-n0 12115 df-z 12201 df-uz 12463 df-rp 12611 df-fz 13120 df-fzo 13263 df-seq 13599 df-exp 13660 df-hash 13921 df-word 14094 df-cj 14686 df-re 14687 df-im 14688 df-sqrt 14822 df-abs 14823 df-clim 15073 df-sum 15274 df-wwlks 27938 df-wwlksn 27939 |
This theorem is referenced by: rusgrnumwwlks 28082 |
Copyright terms: Public domain | W3C validator |