![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashwwlksnext | Structured version Visualization version GIF version |
Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.) |
Ref | Expression |
---|---|
wwlksnextprop.x | ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
wwlksnextprop.e | ⊢ 𝐸 = (Edg‘𝐺) |
wwlksnextprop.y | ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
Ref | Expression |
---|---|
hashwwlksnext | ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnextprop.y | . . 3 ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} | |
2 | wwlksnfi 29952 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
3 | ssrab2 4093 | . . . 4 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺) | |
4 | ssfi 9221 | . . . 4 ⊢ (((𝑁 WWalksN 𝐺) ∈ Fin ∧ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ⊆ (𝑁 WWalksN 𝐺)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) | |
5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
6 | 1, 5 | eqeltrid 2845 | . 2 ⊢ ((Vtx‘𝐺) ∈ Fin → 𝑌 ∈ Fin) |
7 | wwlksnextprop.x | . . . . 5 ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) | |
8 | wwlksnfi 29952 | . . . . 5 ⊢ ((Vtx‘𝐺) ∈ Fin → ((𝑁 + 1) WWalksN 𝐺) ∈ Fin) | |
9 | 7, 8 | eqeltrid 2845 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → 𝑋 ∈ Fin) |
10 | rabfi 9310 | . . . 4 ⊢ (𝑋 ∈ Fin → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) |
12 | 11 | adantr 480 | . 2 ⊢ (((Vtx‘𝐺) ∈ Fin ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ∈ Fin) |
13 | wwlksnextprop.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
14 | 7, 13, 1 | disjxwwlkn 29959 | . . 3 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
15 | 14 | a1i 11 | . 2 ⊢ ((Vtx‘𝐺) ∈ Fin → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) |
16 | 6, 12, 15 | hashrabrex 15867 | 1 ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ⊆ wss 3966 {cpr 4636 Disj wdisj 5118 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 0cc0 11162 1c1 11163 + caddc 11165 ♯chash 14375 lastSclsw 14606 prefix cpfx 14714 Σcsu 15728 Vtxcvtx 29039 Edgcedg 29090 WWalksN cwwlksn 29872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-oi 9557 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-word 14559 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15729 df-wwlks 29876 df-wwlksn 29877 |
This theorem is referenced by: rusgrnumwwlks 30020 |
Copyright terms: Public domain | W3C validator |