MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recidd Structured version   Visualization version   GIF version

Theorem recidd 11502
Description: Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
reccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
recidd (𝜑 → (𝐴 · (1 / 𝐴)) = 1)

Proof of Theorem recidd
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 reccld.2 . 2 (𝜑𝐴 ≠ 0)
3 recid 11403 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (1 / 𝐴)) = 1)
41, 2, 3syl2anc 587 1 (𝜑 → (𝐴 · (1 / 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wne 2935  (class class class)co 7183  cc 10626  0cc0 10628  1c1 10629   · cmul 10633   / cdiv 11388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-er 8333  df-en 8569  df-dom 8570  df-sdom 8571  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389
This theorem is referenced by:  xlemul1  12779  exprec  13575  harmonic  15320  nmoi2  23496  logtayl  25416  cxprec  25442  isosctrlem2  25570  cxplim  25722  amgmlem  25740  lgamgulmlem2  25780  logfaclbnd  25971  dchrabs  26009  lgseisenlem1  26124  lgseisenlem2  26125  lgsquadlem1  26129  ipasslem4  28782  strlem1  30198  knoppndvlem7  34354  dvtan  35483  irrapxlem2  40258  pellexlem2  40265  pell1234qrreccl  40289  pell14qrdich  40304  reclt0d  42505  stirlinglem3  43200  dirkercncflem2  43228  amgmlemALT  46008  young2d  46010
  Copyright terms: Public domain W3C validator