MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logimul Structured version   Visualization version   GIF version

Theorem logimul 25183
Description: Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
logimul ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))

Proof of Theorem logimul
StepHypRef Expression
1 logcl 25138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1129 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
3 ax-icn 10573 . . . . . 6 i ∈ ℂ
4 halfpire 25035 . . . . . . 7 (π / 2) ∈ ℝ
54recni 10632 . . . . . 6 (π / 2) ∈ ℂ
63, 5mulcli 10625 . . . . 5 (i · (π / 2)) ∈ ℂ
7 efadd 15426 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
82, 6, 7sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
9 eflog 25146 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1093adant3 1129 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
11 efhalfpi 25042 . . . . . 6 (exp‘(i · (π / 2))) = i
1211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (π / 2))) = i)
1310, 12oveq12d 7148 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))) = (𝐴 · i))
14 simp1 1133 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
15 mulcom 10600 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 · i) = (i · 𝐴))
1614, 3, 15sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 · i) = (i · 𝐴))
178, 13, 163eqtrd 2860 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = (i · 𝐴))
1817fveq2d 6647 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = (log‘(i · 𝐴)))
19 addcl 10596 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
202, 6, 19sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
21 pire 25029 . . . . . . . 8 π ∈ ℝ
2221renegcli 10924 . . . . . . 7 -π ∈ ℝ
2322a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ∈ ℝ)
242imcld 14533 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
25 readdcl 10597 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
2624, 4, 25sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
27 logimcl 25139 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
28273adant3 1129 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2928simpld 498 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
30 pirp 25032 . . . . . . . 8 π ∈ ℝ+
31 rphalfcl 12394 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (π / 2) ∈ ℝ+
33 ltaddrp 12404 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ+) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3424, 32, 33sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3523, 24, 26, 29, 34lttrd 10778 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + (π / 2)))
36 imadd 14472 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
372, 6, 36sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
38 reim 14447 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
395, 38ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
40 rere 14460 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
414, 40ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
4239, 41eqtr3i 2846 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
4342oveq2i 7141 . . . . . 6 ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2))
4437, 43syl6eq 2872 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2)))
4535, 44breqtrrd 5067 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))))
46 argrege0 25180 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
474renegcli 10924 . . . . . . . . . 10 -(π / 2) ∈ ℝ
4847, 4elicc2i 12781 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
4948simp3bi 1144 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5046, 49syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5121recni 10632 . . . . . . . 8 π ∈ ℂ
52 pidiv2halves 25038 . . . . . . . 8 ((π / 2) + (π / 2)) = π
5351, 5, 5, 52subaddrii 10952 . . . . . . 7 (π − (π / 2)) = (π / 2)
5450, 53breqtrrdi 5081 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π − (π / 2)))
554a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (π / 2) ∈ ℝ)
5621a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → π ∈ ℝ)
57 leaddsub 11093 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5824, 55, 56, 57syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5954, 58mpbird 260 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π)
6044, 59eqbrtrd 5061 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π)
61 ellogrn 25129 . . . 4 (((log‘𝐴) + (i · (π / 2))) ∈ ran log ↔ (((log‘𝐴) + (i · (π / 2))) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))) ∧ (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π))
6220, 45, 60, 61syl3anbrc 1340 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ran log)
63 logef 25151 . . 3 (((log‘𝐴) + (i · (π / 2))) ∈ ran log → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6462, 63syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6518, 64eqtr3d 2858 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007   class class class wbr 5039  ran crn 5529  cfv 6328  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514  ici 10516   + caddc 10517   · cmul 10519   < clt 10652  cle 10653  cmin 10847  -cneg 10848   / cdiv 11274  2c2 11670  +crp 12367  [,]cicc 12719  cre 14435  cim 14436  expce 15394  πcpi 15399  logclog 25124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-xms 22905  df-ms 22906  df-tms 22907  df-cncf 23461  df-limc 24447  df-dv 24448  df-log 25126
This theorem is referenced by:  atanlogsublem  25479
  Copyright terms: Public domain W3C validator