Proof of Theorem logimul
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | logcl 26611 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) | 
| 2 | 1 | 3adant3 1132 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(log‘𝐴) ∈
ℂ) | 
| 3 |  | ax-icn 11215 | . . . . . 6
⊢ i ∈
ℂ | 
| 4 |  | halfpire 26507 | . . . . . . 7
⊢ (π /
2) ∈ ℝ | 
| 5 | 4 | recni 11276 | . . . . . 6
⊢ (π /
2) ∈ ℂ | 
| 6 | 3, 5 | mulcli 11269 | . . . . 5
⊢ (i
· (π / 2)) ∈ ℂ | 
| 7 |  | efadd 16131 | . . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) →
(exp‘((log‘𝐴) +
(i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π /
2))))) | 
| 8 | 2, 6, 7 | sylancl 586 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(exp‘((log‘𝐴) +
(i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π /
2))))) | 
| 9 |  | eflog 26619 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) | 
| 10 | 9 | 3adant3 1132 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(exp‘(log‘𝐴)) =
𝐴) | 
| 11 |  | efhalfpi 26514 | . . . . . 6
⊢
(exp‘(i · (π / 2))) = i | 
| 12 | 11 | a1i 11 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(exp‘(i · (π / 2))) = i) | 
| 13 | 10, 12 | oveq12d 7450 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
((exp‘(log‘𝐴))
· (exp‘(i · (π / 2)))) = (𝐴 · i)) | 
| 14 |  | simp1 1136 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
𝐴 ∈
ℂ) | 
| 15 |  | mulcom 11242 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ i ∈
ℂ) → (𝐴 ·
i) = (i · 𝐴)) | 
| 16 | 14, 3, 15 | sylancl 586 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(𝐴 · i) = (i
· 𝐴)) | 
| 17 | 8, 13, 16 | 3eqtrd 2780 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(exp‘((log‘𝐴) +
(i · (π / 2)))) = (i · 𝐴)) | 
| 18 | 17 | fveq2d 6909 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(log‘(exp‘((log‘𝐴) + (i · (π / 2))))) =
(log‘(i · 𝐴))) | 
| 19 |  | addcl 11238 | . . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) →
((log‘𝐴) + (i
· (π / 2))) ∈ ℂ) | 
| 20 | 2, 6, 19 | sylancl 586 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
((log‘𝐴) + (i
· (π / 2))) ∈ ℂ) | 
| 21 |  | pire 26501 | . . . . . . . 8
⊢ π
∈ ℝ | 
| 22 | 21 | renegcli 11571 | . . . . . . 7
⊢ -π
∈ ℝ | 
| 23 | 22 | a1i 11 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
-π ∈ ℝ) | 
| 24 | 2 | imcld 15235 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) | 
| 25 |  | readdcl 11239 | . . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈
ℝ) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈
ℝ) | 
| 26 | 24, 4, 25 | sylancl 586 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
((ℑ‘(log‘𝐴)) + (π / 2)) ∈
ℝ) | 
| 27 |  | logimcl 26612 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | 
| 28 | 27 | 3adant3 1132 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | 
| 29 | 28 | simpld 494 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
-π < (ℑ‘(log‘𝐴))) | 
| 30 |  | pirp 26504 | . . . . . . . 8
⊢ π
∈ ℝ+ | 
| 31 |  | rphalfcl 13063 | . . . . . . . 8
⊢ (π
∈ ℝ+ → (π / 2) ∈
ℝ+) | 
| 32 | 30, 31 | ax-mp 5 | . . . . . . 7
⊢ (π /
2) ∈ ℝ+ | 
| 33 |  | ltaddrp 13073 | . . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈
ℝ+) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π /
2))) | 
| 34 | 24, 32, 33 | sylancl 586 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π /
2))) | 
| 35 | 23, 24, 26, 29, 34 | lttrd 11423 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) + (π / 2))) | 
| 36 |  | imadd 15174 | . . . . . . 7
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) →
(ℑ‘((log‘𝐴) + (i · (π / 2)))) =
((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π /
2))))) | 
| 37 | 2, 6, 36 | sylancl 586 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘((log‘𝐴) + (i · (π / 2)))) =
((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π /
2))))) | 
| 38 |  | reim 15149 | . . . . . . . . 9
⊢ ((π /
2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i ·
(π / 2)))) | 
| 39 | 5, 38 | ax-mp 5 | . . . . . . . 8
⊢
(ℜ‘(π / 2)) = (ℑ‘(i · (π /
2))) | 
| 40 |  | rere 15162 | . . . . . . . . 9
⊢ ((π /
2) ∈ ℝ → (ℜ‘(π / 2)) = (π /
2)) | 
| 41 | 4, 40 | ax-mp 5 | . . . . . . . 8
⊢
(ℜ‘(π / 2)) = (π / 2) | 
| 42 | 39, 41 | eqtr3i 2766 | . . . . . . 7
⊢
(ℑ‘(i · (π / 2))) = (π / 2) | 
| 43 | 42 | oveq2i 7443 | . . . . . 6
⊢
((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π /
2)))) = ((ℑ‘(log‘𝐴)) + (π / 2)) | 
| 44 | 37, 43 | eqtrdi 2792 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘((log‘𝐴) + (i · (π / 2)))) =
((ℑ‘(log‘𝐴)) + (π / 2))) | 
| 45 | 35, 44 | breqtrrd 5170 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
-π < (ℑ‘((log‘𝐴) + (i · (π /
2))))) | 
| 46 |  | argrege0 26654 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π /
2))) | 
| 47 | 4 | renegcli 11571 | . . . . . . . . . 10
⊢ -(π /
2) ∈ ℝ | 
| 48 | 47, 4 | elicc2i 13454 | . . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π /
2))) | 
| 49 | 48 | simp3bi 1147 | . . . . . . . 8
⊢
((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) →
(ℑ‘(log‘𝐴)) ≤ (π / 2)) | 
| 50 | 46, 49 | syl 17 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ (π / 2)) | 
| 51 | 21 | recni 11276 | . . . . . . . 8
⊢ π
∈ ℂ | 
| 52 |  | pidiv2halves 26510 | . . . . . . . 8
⊢ ((π /
2) + (π / 2)) = π | 
| 53 | 51, 5, 5, 52 | subaddrii 11599 | . . . . . . 7
⊢ (π
− (π / 2)) = (π / 2) | 
| 54 | 50, 53 | breqtrrdi 5184 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ (π − (π /
2))) | 
| 55 | 4 | a1i 11 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(π / 2) ∈ ℝ) | 
| 56 | 21 | a1i 11 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
π ∈ ℝ) | 
| 57 |  | leaddsub 11740 | . . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈
ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π
↔ (ℑ‘(log‘𝐴)) ≤ (π − (π /
2)))) | 
| 58 | 24, 55, 56, 57 | syl3anc 1372 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔
(ℑ‘(log‘𝐴)) ≤ (π − (π /
2)))) | 
| 59 | 54, 58 | mpbird 257 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π) | 
| 60 | 44, 59 | eqbrtrd 5164 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤
π) | 
| 61 |  | ellogrn 26602 | . . . 4
⊢
(((log‘𝐴) + (i
· (π / 2))) ∈ ran log ↔ (((log‘𝐴) + (i · (π / 2))) ∈ ℂ
∧ -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))) ∧
(ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤
π)) | 
| 62 | 20, 45, 60, 61 | syl3anbrc 1343 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
((log‘𝐴) + (i
· (π / 2))) ∈ ran log) | 
| 63 |  | logef 26624 | . . 3
⊢
(((log‘𝐴) + (i
· (π / 2))) ∈ ran log →
(log‘(exp‘((log‘𝐴) + (i · (π / 2))))) =
((log‘𝐴) + (i
· (π / 2)))) | 
| 64 | 62, 63 | syl 17 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(log‘(exp‘((log‘𝐴) + (i · (π / 2))))) =
((log‘𝐴) + (i
· (π / 2)))) | 
| 65 | 18, 64 | eqtr3d 2778 | 1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤
(ℜ‘𝐴)) →
(log‘(i · 𝐴))
= ((log‘𝐴) + (i
· (π / 2)))) |