MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logimul Structured version   Visualization version   GIF version

Theorem logimul 26543
Description: Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
logimul ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))

Proof of Theorem logimul
StepHypRef Expression
1 logcl 26497 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
3 ax-icn 11057 . . . . . 6 i ∈ ℂ
4 halfpire 26393 . . . . . . 7 (π / 2) ∈ ℝ
54recni 11118 . . . . . 6 (π / 2) ∈ ℂ
63, 5mulcli 11111 . . . . 5 (i · (π / 2)) ∈ ℂ
7 efadd 15993 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
82, 6, 7sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
9 eflog 26505 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1093adant3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
11 efhalfpi 26400 . . . . . 6 (exp‘(i · (π / 2))) = i
1211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (π / 2))) = i)
1310, 12oveq12d 7359 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))) = (𝐴 · i))
14 simp1 1136 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
15 mulcom 11084 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 · i) = (i · 𝐴))
1614, 3, 15sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 · i) = (i · 𝐴))
178, 13, 163eqtrd 2769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = (i · 𝐴))
1817fveq2d 6821 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = (log‘(i · 𝐴)))
19 addcl 11080 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
202, 6, 19sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
21 pire 26386 . . . . . . . 8 π ∈ ℝ
2221renegcli 11414 . . . . . . 7 -π ∈ ℝ
2322a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ∈ ℝ)
242imcld 15094 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
25 readdcl 11081 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
2624, 4, 25sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
27 logimcl 26498 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
28273adant3 1132 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2928simpld 494 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
30 pirp 26390 . . . . . . . 8 π ∈ ℝ+
31 rphalfcl 12911 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (π / 2) ∈ ℝ+
33 ltaddrp 12921 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ+) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3424, 32, 33sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3523, 24, 26, 29, 34lttrd 11266 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + (π / 2)))
36 imadd 15033 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
372, 6, 36sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
38 reim 15008 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
395, 38ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
40 rere 15021 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
414, 40ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
4239, 41eqtr3i 2755 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
4342oveq2i 7352 . . . . . 6 ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2))
4437, 43eqtrdi 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2)))
4535, 44breqtrrd 5117 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))))
46 argrege0 26540 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
474renegcli 11414 . . . . . . . . . 10 -(π / 2) ∈ ℝ
4847, 4elicc2i 13304 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
4948simp3bi 1147 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5046, 49syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5121recni 11118 . . . . . . . 8 π ∈ ℂ
52 pidiv2halves 26396 . . . . . . . 8 ((π / 2) + (π / 2)) = π
5351, 5, 5, 52subaddrii 11442 . . . . . . 7 (π − (π / 2)) = (π / 2)
5450, 53breqtrrdi 5131 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π − (π / 2)))
554a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (π / 2) ∈ ℝ)
5621a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → π ∈ ℝ)
57 leaddsub 11585 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5824, 55, 56, 57syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5954, 58mpbird 257 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π)
6044, 59eqbrtrd 5111 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π)
61 ellogrn 26488 . . . 4 (((log‘𝐴) + (i · (π / 2))) ∈ ran log ↔ (((log‘𝐴) + (i · (π / 2))) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))) ∧ (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π))
6220, 45, 60, 61syl3anbrc 1344 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ran log)
63 logef 26510 . . 3 (((log‘𝐴) + (i · (π / 2))) ∈ ran log → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6462, 63syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6518, 64eqtr3d 2767 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  ran crn 5615  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  ici 11000   + caddc 11001   · cmul 11003   < clt 11138  cle 11139  cmin 11336  -cneg 11337   / cdiv 11766  2c2 12172  +crp 12882  [,]cicc 13240  cre 14996  cim 14997  expce 15960  πcpi 15965  logclog 26483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485
This theorem is referenced by:  atanlogsublem  26845
  Copyright terms: Public domain W3C validator