MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logimul Structured version   Visualization version   GIF version

Theorem logimul 26530
Description: Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
logimul ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))

Proof of Theorem logimul
StepHypRef Expression
1 logcl 26484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
3 ax-icn 11134 . . . . . 6 i ∈ ℂ
4 halfpire 26380 . . . . . . 7 (π / 2) ∈ ℝ
54recni 11195 . . . . . 6 (π / 2) ∈ ℂ
63, 5mulcli 11188 . . . . 5 (i · (π / 2)) ∈ ℂ
7 efadd 16067 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
82, 6, 7sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
9 eflog 26492 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1093adant3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
11 efhalfpi 26387 . . . . . 6 (exp‘(i · (π / 2))) = i
1211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (π / 2))) = i)
1310, 12oveq12d 7408 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))) = (𝐴 · i))
14 simp1 1136 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
15 mulcom 11161 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 · i) = (i · 𝐴))
1614, 3, 15sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 · i) = (i · 𝐴))
178, 13, 163eqtrd 2769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = (i · 𝐴))
1817fveq2d 6865 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = (log‘(i · 𝐴)))
19 addcl 11157 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
202, 6, 19sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
21 pire 26373 . . . . . . . 8 π ∈ ℝ
2221renegcli 11490 . . . . . . 7 -π ∈ ℝ
2322a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ∈ ℝ)
242imcld 15168 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
25 readdcl 11158 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
2624, 4, 25sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
27 logimcl 26485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
28273adant3 1132 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2928simpld 494 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
30 pirp 26377 . . . . . . . 8 π ∈ ℝ+
31 rphalfcl 12987 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (π / 2) ∈ ℝ+
33 ltaddrp 12997 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ+) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3424, 32, 33sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3523, 24, 26, 29, 34lttrd 11342 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + (π / 2)))
36 imadd 15107 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
372, 6, 36sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
38 reim 15082 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
395, 38ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
40 rere 15095 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
414, 40ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
4239, 41eqtr3i 2755 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
4342oveq2i 7401 . . . . . 6 ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2))
4437, 43eqtrdi 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2)))
4535, 44breqtrrd 5138 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))))
46 argrege0 26527 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
474renegcli 11490 . . . . . . . . . 10 -(π / 2) ∈ ℝ
4847, 4elicc2i 13380 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
4948simp3bi 1147 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5046, 49syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5121recni 11195 . . . . . . . 8 π ∈ ℂ
52 pidiv2halves 26383 . . . . . . . 8 ((π / 2) + (π / 2)) = π
5351, 5, 5, 52subaddrii 11518 . . . . . . 7 (π − (π / 2)) = (π / 2)
5450, 53breqtrrdi 5152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π − (π / 2)))
554a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (π / 2) ∈ ℝ)
5621a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → π ∈ ℝ)
57 leaddsub 11661 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5824, 55, 56, 57syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5954, 58mpbird 257 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π)
6044, 59eqbrtrd 5132 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π)
61 ellogrn 26475 . . . 4 (((log‘𝐴) + (i · (π / 2))) ∈ ran log ↔ (((log‘𝐴) + (i · (π / 2))) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))) ∧ (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π))
6220, 45, 60, 61syl3anbrc 1344 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ran log)
63 logef 26497 . . 3 (((log‘𝐴) + (i · (π / 2))) ∈ ran log → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6462, 63syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6518, 64eqtr3d 2767 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  ici 11077   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  +crp 12958  [,]cicc 13316  cre 15070  cim 15071  expce 16034  πcpi 16039  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472
This theorem is referenced by:  atanlogsublem  26832
  Copyright terms: Public domain W3C validator