MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logimul Structured version   Visualization version   GIF version

Theorem logimul 25767
Description: Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
logimul ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))

Proof of Theorem logimul
StepHypRef Expression
1 logcl 25722 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
3 ax-icn 10931 . . . . . 6 i ∈ ℂ
4 halfpire 25619 . . . . . . 7 (π / 2) ∈ ℝ
54recni 10990 . . . . . 6 (π / 2) ∈ ℂ
63, 5mulcli 10983 . . . . 5 (i · (π / 2)) ∈ ℂ
7 efadd 15801 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
82, 6, 7sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
9 eflog 25730 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1093adant3 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
11 efhalfpi 25626 . . . . . 6 (exp‘(i · (π / 2))) = i
1211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (π / 2))) = i)
1310, 12oveq12d 7289 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))) = (𝐴 · i))
14 simp1 1135 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
15 mulcom 10958 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 · i) = (i · 𝐴))
1614, 3, 15sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 · i) = (i · 𝐴))
178, 13, 163eqtrd 2784 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = (i · 𝐴))
1817fveq2d 6775 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = (log‘(i · 𝐴)))
19 addcl 10954 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
202, 6, 19sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
21 pire 25613 . . . . . . . 8 π ∈ ℝ
2221renegcli 11282 . . . . . . 7 -π ∈ ℝ
2322a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ∈ ℝ)
242imcld 14904 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
25 readdcl 10955 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
2624, 4, 25sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
27 logimcl 25723 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
28273adant3 1131 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2928simpld 495 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
30 pirp 25616 . . . . . . . 8 π ∈ ℝ+
31 rphalfcl 12756 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (π / 2) ∈ ℝ+
33 ltaddrp 12766 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ+) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3424, 32, 33sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3523, 24, 26, 29, 34lttrd 11136 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + (π / 2)))
36 imadd 14843 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
372, 6, 36sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
38 reim 14818 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
395, 38ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
40 rere 14831 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
414, 40ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
4239, 41eqtr3i 2770 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
4342oveq2i 7282 . . . . . 6 ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2))
4437, 43eqtrdi 2796 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2)))
4535, 44breqtrrd 5107 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))))
46 argrege0 25764 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
474renegcli 11282 . . . . . . . . . 10 -(π / 2) ∈ ℝ
4847, 4elicc2i 13144 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
4948simp3bi 1146 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5046, 49syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5121recni 10990 . . . . . . . 8 π ∈ ℂ
52 pidiv2halves 25622 . . . . . . . 8 ((π / 2) + (π / 2)) = π
5351, 5, 5, 52subaddrii 11310 . . . . . . 7 (π − (π / 2)) = (π / 2)
5450, 53breqtrrdi 5121 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π − (π / 2)))
554a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (π / 2) ∈ ℝ)
5621a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → π ∈ ℝ)
57 leaddsub 11451 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5824, 55, 56, 57syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5954, 58mpbird 256 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π)
6044, 59eqbrtrd 5101 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π)
61 ellogrn 25713 . . . 4 (((log‘𝐴) + (i · (π / 2))) ∈ ran log ↔ (((log‘𝐴) + (i · (π / 2))) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))) ∧ (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π))
6220, 45, 60, 61syl3anbrc 1342 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ran log)
63 logef 25735 . . 3 (((log‘𝐴) + (i · (π / 2))) ∈ ran log → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6462, 63syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6518, 64eqtr3d 2782 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  ran crn 5591  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  ici 10874   + caddc 10875   · cmul 10877   < clt 11010  cle 11011  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12729  [,]cicc 13081  cre 14806  cim 14807  expce 15769  πcpi 15774  logclog 25708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-pi 15780  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-log 25710
This theorem is referenced by:  atanlogsublem  26063
  Copyright terms: Public domain W3C validator