Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abscncfALT | Structured version Visualization version GIF version |
Description: Absolute value is continuous. Alternate proof of abscncf 24169. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
abscncfALT | ⊢ abs ∈ (ℂ–cn→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | eqid 2737 | . . 3 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
3 | 1, 2 | abscn 24114 | . 2 ⊢ abs ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) |
4 | ssid 3957 | . . 3 ⊢ ℂ ⊆ ℂ | |
5 | ax-resscn 11033 | . . 3 ⊢ ℝ ⊆ ℂ | |
6 | 1 | cnfldtopon 24051 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
7 | 6 | toponunii 22170 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
8 | 7 | restid 17241 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)) |
9 | 6, 8 | ax-mp 5 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld) |
10 | 9 | eqcomi 2746 | . . . 4 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
11 | 1 | tgioo2 24071 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
12 | 1, 10, 11 | cncfcn 24178 | . . 3 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))) |
13 | 4, 5, 12 | mp2an 690 | . 2 ⊢ (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) |
14 | 3, 13 | eleqtrri 2837 | 1 ⊢ abs ∈ (ℂ–cn→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ⊆ wss 3901 ran crn 5625 ‘cfv 6483 (class class class)co 7341 ℂcc 10974 ℝcr 10975 (,)cioo 13184 abscabs 15044 ↾t crest 17228 TopOpenctopn 17229 topGenctg 17245 ℂfldccnfld 20702 TopOnctopon 22164 Cn ccn 22480 –cn→ccncf 24144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-ec 8575 df-map 8692 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-ordt 17309 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-ps 18381 df-tsr 18382 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-mgp 19815 df-ring 19879 df-cring 19880 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-cnfld 20703 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cn 22483 df-cnp 22484 df-tx 22818 df-hmeo 23011 df-xms 23578 df-ms 23579 df-tms 23580 df-nm 23843 df-ngp 23844 df-cncf 24146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |