Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
(class class class)co 7358 ℝcr 11051
/ cdiv 11813 2c2 12209 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-2 12217 |
This theorem is referenced by: div4p1lem1div2
12409 flhalf
13736 fldiv4p1lem1div2
13741 fldiv4lem1div2uz2
13742 facavg
14202 recl
14996 crre
15000 geomulcvg
15762 resin4p
16021 recos4p
16022 resinhcl
16039 cos01bnd
16069 rpnnen2lem11
16107 ruclem1
16114 ruclem2
16115 ruclem3
16116 nno
16265 bitsp1
16312 prmreclem5
16793 4sqlem5
16815 4sqlem6
16816 4sqlem10
16820 4sqlem15
16832 4sqlem16
16833 blhalf
23761 metustexhalf
23915 cfilucfil
23918 nlmvscnlem2
24052 ioo2bl
24159 ioo2blex
24160 reperflem
24184 metnrmlem3
24227 ipcnlem2
24611 iscau3
24645 minveclem4
24799 ovolunlem1a
24863 dvferm1lem
25351 dvferm2lem
25353 lhop1lem
25380 ulmdvlem1
25762 radcnvle
25782 psercnlem1
25787 pserdvlem1
25789 pilem3
25815 coseq00topi
25862 cosordlem
25889 logtayl
26018 cxpcn3lem
26103 isosctrlem1
26171 chordthmlem4
26188 heron
26191 birthdaylem3
26306 cxp2limlem
26328 lgamgulmlem2
26382 lgamgulmlem3
26383 lgamucov
26390 ftalem2
26426 chtub
26563 bcmono
26628 lgsqrlem2
26698 gausslemma2dlem1a
26716 gausslemma2dlem2
26718 gausslemma2dlem3
26719 lgsquadlem1
26731 lgsquadlem2
26732 2lgslem1a2
26741 2lgslem1c
26744 2sqlem8
26777 chpo1ubb
26832 dchrisum0fno1
26862 logdivsum
26884 mulog2sumlem1
26885 mulog2sumlem2
26886 vmalogdivsum2
26889 vmalogdivsum
26890 2vmadivsumlem
26891 selberg4lem1
26911 selberg3r
26920 selberg4r
26921 selberg34r
26922 pntpbnd1a
26936 pntibndlem2
26942 pntibndlem3
26943 pntlemg
26949 pntlemh
26950 minvecolem4
29825 nmcexi
30971 lt2addrd
31659 le2halvesd
31663 sqsscirc1
32492 tpr2rico
32496 dnibndlem12
34955 knoppndvlem21
34998 iooelexlt
35836 sin2h
36071 cos2h
36072 tan2h
36073 mblfinlem4
36121 itg2addnclem
36132 ftc1anclem7
36160 ftc1anc
36162 3lexlogpow2ineq1
40518 3lexlogpow2ineq2
40519 3lexlogpow5ineq5
40520 aks4d1p1p2
40530 aks4d1p1p4
40531 aks4d1p1p7
40534 sqrtcvallem3
41917 sqrtcvallem5
41919 sqrtcval
41920 oddfl
43518 dstregt0
43522 suplesup
43580 infleinflem1
43611 ioomidp
43759 lptre2pt
43888 0ellimcdiv
43897 limsupgtlem
44025 dvbdfbdioolem2
44177 dvbdfbdioo
44178 ioodvbdlimc1lem2
44180 ioodvbdlimc2lem
44182 stoweidlem14
44262 stoweidlem24
44272 stoweidlem49
44297 stoweidlem52
44300 stoweidlem62
44310 dirker2re
44340 dirkertrigeqlem3
44348 dirkertrigeq
44349 dirkercncflem1
44351 dirkercncflem2
44352 dirkercncflem4
44354 fourierdlem5
44360 fourierdlem10
44365 fourierdlem43
44398 fourierdlem56
44410 fourierdlem58
44412 fourierdlem62
44416 fourierdlem66
44420 fourierdlem68
44422 fourierdlem72
44426 fourierdlem76
44430 fourierdlem78
44432 fourierdlem79
44433 fourierdlem83
44437 fourierdlem87
44441 fourierdlem103
44457 fourierdlem104
44458 fourierdlem112
44466 sge0xaddlem1
44681 smflimlem4
45022 flnn0div2ge
46626 dignn0flhalflem2
46709 dignn0flhalf
46711 |