Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
(class class class)co 7401 ℝcr 11104
/ cdiv 11867 2c2 12263 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 |
This theorem is referenced by: div4p1lem1div2
12463 flhalf
13791 fldiv4p1lem1div2
13796 fldiv4lem1div2uz2
13797 facavg
14257 recl
15053 crre
15057 geomulcvg
15818 resin4p
16077 recos4p
16078 resinhcl
16095 cos01bnd
16125 rpnnen2lem11
16163 ruclem1
16170 ruclem2
16171 ruclem3
16172 nno
16321 bitsp1
16368 prmreclem5
16849 4sqlem5
16871 4sqlem6
16872 4sqlem10
16876 4sqlem15
16888 4sqlem16
16889 blhalf
24221 metustexhalf
24375 cfilucfil
24378 nlmvscnlem2
24512 ioo2bl
24619 ioo2blex
24620 reperflem
24644 metnrmlem3
24687 ipcnlem2
25082 iscau3
25116 minveclem4
25270 ovolunlem1a
25335 dvferm1lem
25826 dvferm2lem
25828 lhop1lem
25856 ulmdvlem1
26241 radcnvle
26261 psercnlem1
26267 pserdvlem1
26269 pilem3
26295 coseq00topi
26342 cosordlem
26369 logtayl
26498 cxpcn3lem
26586 isosctrlem1
26654 chordthmlem4
26671 heron
26674 birthdaylem3
26789 cxp2limlem
26812 lgamgulmlem2
26866 lgamgulmlem3
26867 lgamucov
26874 ftalem2
26910 chtub
27049 bcmono
27114 lgsqrlem2
27184 gausslemma2dlem1a
27202 gausslemma2dlem2
27204 gausslemma2dlem3
27205 lgsquadlem1
27217 lgsquadlem2
27218 2lgslem1a2
27227 2lgslem1c
27230 2sqlem8
27263 chpo1ubb
27318 dchrisum0fno1
27348 logdivsum
27370 mulog2sumlem1
27371 mulog2sumlem2
27372 vmalogdivsum2
27375 vmalogdivsum
27376 2vmadivsumlem
27377 selberg4lem1
27397 selberg3r
27406 selberg4r
27407 selberg34r
27408 pntpbnd1a
27422 pntibndlem2
27428 pntibndlem3
27429 pntlemg
27435 pntlemh
27436 minvecolem4
30557 nmcexi
31703 lt2addrd
32388 le2halvesd
32392 sqsscirc1
33343 tpr2rico
33347 dnibndlem12
35821 knoppndvlem21
35864 iooelexlt
36699 sin2h
36934 cos2h
36935 tan2h
36936 mblfinlem4
36984 itg2addnclem
36995 ftc1anclem7
37023 ftc1anc
37025 3lexlogpow2ineq1
41382 3lexlogpow2ineq2
41383 3lexlogpow5ineq5
41384 aks4d1p1p2
41394 aks4d1p1p4
41395 aks4d1p1p7
41398 sqrtcvallem3
42844 sqrtcvallem5
42846 sqrtcval
42847 oddfl
44438 dstregt0
44442 suplesup
44500 infleinflem1
44531 ioomidp
44678 lptre2pt
44807 0ellimcdiv
44816 limsupgtlem
44944 dvbdfbdioolem2
45096 dvbdfbdioo
45097 ioodvbdlimc1lem2
45099 ioodvbdlimc2lem
45101 stoweidlem14
45181 stoweidlem24
45191 stoweidlem49
45216 stoweidlem52
45219 stoweidlem62
45229 dirker2re
45259 dirkertrigeqlem3
45267 dirkertrigeq
45268 dirkercncflem1
45270 dirkercncflem2
45271 dirkercncflem4
45273 fourierdlem5
45279 fourierdlem10
45284 fourierdlem43
45317 fourierdlem56
45329 fourierdlem58
45331 fourierdlem62
45335 fourierdlem66
45339 fourierdlem68
45341 fourierdlem72
45345 fourierdlem76
45349 fourierdlem78
45351 fourierdlem79
45352 fourierdlem83
45356 fourierdlem87
45360 fourierdlem103
45376 fourierdlem104
45377 fourierdlem112
45385 sge0xaddlem1
45600 smflimlem4
45941 flnn0div2ge
47373 dignn0flhalflem2
47456 dignn0flhalf
47458 |