Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7405 ℝcr 11105
/ cdiv 11867 2c2 12263 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 |
This theorem is referenced by: div4p1lem1div2
12463 flhalf
13791 fldiv4p1lem1div2
13796 fldiv4lem1div2uz2
13797 facavg
14257 recl
15053 crre
15057 geomulcvg
15818 resin4p
16077 recos4p
16078 resinhcl
16095 cos01bnd
16125 rpnnen2lem11
16163 ruclem1
16170 ruclem2
16171 ruclem3
16172 nno
16321 bitsp1
16368 prmreclem5
16849 4sqlem5
16871 4sqlem6
16872 4sqlem10
16876 4sqlem15
16888 4sqlem16
16889 blhalf
23902 metustexhalf
24056 cfilucfil
24059 nlmvscnlem2
24193 ioo2bl
24300 ioo2blex
24301 reperflem
24325 metnrmlem3
24368 ipcnlem2
24752 iscau3
24786 minveclem4
24940 ovolunlem1a
25004 dvferm1lem
25492 dvferm2lem
25494 lhop1lem
25521 ulmdvlem1
25903 radcnvle
25923 psercnlem1
25928 pserdvlem1
25930 pilem3
25956 coseq00topi
26003 cosordlem
26030 logtayl
26159 cxpcn3lem
26244 isosctrlem1
26312 chordthmlem4
26329 heron
26332 birthdaylem3
26447 cxp2limlem
26469 lgamgulmlem2
26523 lgamgulmlem3
26524 lgamucov
26531 ftalem2
26567 chtub
26704 bcmono
26769 lgsqrlem2
26839 gausslemma2dlem1a
26857 gausslemma2dlem2
26859 gausslemma2dlem3
26860 lgsquadlem1
26872 lgsquadlem2
26873 2lgslem1a2
26882 2lgslem1c
26885 2sqlem8
26918 chpo1ubb
26973 dchrisum0fno1
27003 logdivsum
27025 mulog2sumlem1
27026 mulog2sumlem2
27027 vmalogdivsum2
27030 vmalogdivsum
27031 2vmadivsumlem
27032 selberg4lem1
27052 selberg3r
27061 selberg4r
27062 selberg34r
27063 pntpbnd1a
27077 pntibndlem2
27083 pntibndlem3
27084 pntlemg
27090 pntlemh
27091 minvecolem4
30120 nmcexi
31266 lt2addrd
31951 le2halvesd
31955 sqsscirc1
32876 tpr2rico
32880 dnibndlem12
35353 knoppndvlem21
35396 iooelexlt
36231 sin2h
36466 cos2h
36467 tan2h
36468 mblfinlem4
36516 itg2addnclem
36527 ftc1anclem7
36555 ftc1anc
36557 3lexlogpow2ineq1
40911 3lexlogpow2ineq2
40912 3lexlogpow5ineq5
40913 aks4d1p1p2
40923 aks4d1p1p4
40924 aks4d1p1p7
40927 sqrtcvallem3
42374 sqrtcvallem5
42376 sqrtcval
42377 oddfl
43973 dstregt0
43977 suplesup
44035 infleinflem1
44066 ioomidp
44213 lptre2pt
44342 0ellimcdiv
44351 limsupgtlem
44479 dvbdfbdioolem2
44631 dvbdfbdioo
44632 ioodvbdlimc1lem2
44634 ioodvbdlimc2lem
44636 stoweidlem14
44716 stoweidlem24
44726 stoweidlem49
44751 stoweidlem52
44754 stoweidlem62
44764 dirker2re
44794 dirkertrigeqlem3
44802 dirkertrigeq
44803 dirkercncflem1
44805 dirkercncflem2
44806 dirkercncflem4
44808 fourierdlem5
44814 fourierdlem10
44819 fourierdlem43
44852 fourierdlem56
44864 fourierdlem58
44866 fourierdlem62
44870 fourierdlem66
44874 fourierdlem68
44876 fourierdlem72
44880 fourierdlem76
44884 fourierdlem78
44886 fourierdlem79
44887 fourierdlem83
44891 fourierdlem87
44895 fourierdlem103
44911 fourierdlem104
44912 fourierdlem112
44920 sge0xaddlem1
45135 smflimlem4
45476 flnn0div2ge
47172 dignn0flhalflem2
47255 dignn0flhalf
47257 |