Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumlsscl Structured version   Visualization version   GIF version

Theorem gsumlsscl 44411
Description: Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumlsscl.s 𝑆 = (LSubSp‘𝑀)
gsumlsscl.r 𝑅 = (Scalar‘𝑀)
gsumlsscl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
gsumlsscl ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → ((𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍))
Distinct variable groups:   𝑣,𝐵   𝑣,𝐹   𝑣,𝑀   𝑣,𝑅   𝑣,𝑆   𝑣,𝑉   𝑣,𝑍

Proof of Theorem gsumlsscl
StepHypRef Expression
1 eqid 2819 . . 3 (0g𝑀) = (0g𝑀)
2 lmodabl 19673 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
323ad2ant1 1127 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑀 ∈ Abel)
43adantr 483 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑀 ∈ Abel)
5 ssexg 5218 . . . . . 6 ((𝑉𝑍𝑍𝑆) → 𝑉 ∈ V)
65ancoms 461 . . . . 5 ((𝑍𝑆𝑉𝑍) → 𝑉 ∈ V)
763adant1 1124 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ∈ V)
87adantr 483 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑉 ∈ V)
9 3simpa 1142 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
10 gsumlsscl.s . . . . . 6 𝑆 = (LSubSp‘𝑀)
1110lsssubg 19721 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆) → 𝑍 ∈ (SubGrp‘𝑀))
129, 11syl 17 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑍 ∈ (SubGrp‘𝑀))
1312adantr 483 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑍 ∈ (SubGrp‘𝑀))
149adantr 483 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
1514adantr 483 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
16 elmapi 8420 . . . . . . . 8 (𝐹 ∈ (𝐵m 𝑉) → 𝐹:𝑉𝐵)
17 ffvelrn 6842 . . . . . . . . 9 ((𝐹:𝑉𝐵𝑣𝑉) → (𝐹𝑣) ∈ 𝐵)
1817ex 415 . . . . . . . 8 (𝐹:𝑉𝐵 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
1916, 18syl 17 . . . . . . 7 (𝐹 ∈ (𝐵m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
2019ad2antrl 726 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
2120imp 409 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝐵)
22 ssel 3959 . . . . . . . 8 (𝑉𝑍 → (𝑣𝑉𝑣𝑍))
23223ad2ant3 1129 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑣𝑉𝑣𝑍))
2423adantr 483 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉𝑣𝑍))
2524imp 409 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → 𝑣𝑍)
26 gsumlsscl.r . . . . . 6 𝑅 = (Scalar‘𝑀)
27 eqid 2819 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
28 gsumlsscl.b . . . . . 6 𝐵 = (Base‘𝑅)
2926, 27, 28, 10lssvscl 19719 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑍𝑆) ∧ ((𝐹𝑣) ∈ 𝐵𝑣𝑍)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝑍)
3015, 21, 25, 29syl12anc 834 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝑍)
3130fmpttd 6872 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝑍)
32 simp1 1130 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑀 ∈ LMod)
33 eqid 2819 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
3433, 10lssss 19700 . . . . . . . . . 10 (𝑍𝑆𝑍 ⊆ (Base‘𝑀))
35 sstr 3973 . . . . . . . . . . 11 ((𝑉𝑍𝑍 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
3635expcom 416 . . . . . . . . . 10 (𝑍 ⊆ (Base‘𝑀) → (𝑉𝑍𝑉 ⊆ (Base‘𝑀)))
3734, 36syl 17 . . . . . . . . 9 (𝑍𝑆 → (𝑉𝑍𝑉 ⊆ (Base‘𝑀)))
3837a1i 11 . . . . . . . 8 (𝑀 ∈ LMod → (𝑍𝑆 → (𝑉𝑍𝑉 ⊆ (Base‘𝑀))))
39383imp 1105 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ⊆ (Base‘𝑀))
40 elpwg 4543 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
417, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
4239, 41mpbird 259 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ∈ 𝒫 (Base‘𝑀))
4332, 42jca 514 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
4443adantr 483 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
45 simprl 769 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝐹 ∈ (𝐵m 𝑉))
46 simprr 771 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝐹 finSupp (0g𝑅))
4726, 28scmfsupp 44406 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4844, 45, 46, 47syl3anc 1365 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
491, 4, 8, 13, 31, 48gsumsubgcl 19032 . 2 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍)
5049ex 415 1 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → ((𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  Vcvv 3493  wss 3934  𝒫 cpw 4537   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398   finSupp cfsupp 8825  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  SubGrpcsubg 18265  Abelcabl 18899  LModclmod 19626  LSubSpclss 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-lmod 19628  df-lss 19696
This theorem is referenced by:  lincellss  44461
  Copyright terms: Public domain W3C validator