Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumlsscl Structured version   Visualization version   GIF version

Theorem gsumlsscl 48494
Description: Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumlsscl.s 𝑆 = (LSubSp‘𝑀)
gsumlsscl.r 𝑅 = (Scalar‘𝑀)
gsumlsscl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
gsumlsscl ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → ((𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍))
Distinct variable groups:   𝑣,𝐵   𝑣,𝐹   𝑣,𝑀   𝑣,𝑅   𝑣,𝑆   𝑣,𝑉   𝑣,𝑍

Proof of Theorem gsumlsscl
StepHypRef Expression
1 eqid 2733 . . 3 (0g𝑀) = (0g𝑀)
2 lmodabl 20852 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
323ad2ant1 1133 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑀 ∈ Abel)
43adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑀 ∈ Abel)
5 ssexg 5265 . . . . . 6 ((𝑉𝑍𝑍𝑆) → 𝑉 ∈ V)
65ancoms 458 . . . . 5 ((𝑍𝑆𝑉𝑍) → 𝑉 ∈ V)
763adant1 1130 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ∈ V)
87adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑉 ∈ V)
9 3simpa 1148 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
10 gsumlsscl.s . . . . . 6 𝑆 = (LSubSp‘𝑀)
1110lsssubg 20900 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆) → 𝑍 ∈ (SubGrp‘𝑀))
129, 11syl 17 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑍 ∈ (SubGrp‘𝑀))
1312adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑍 ∈ (SubGrp‘𝑀))
149adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
1514adantr 480 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
16 elmapi 8782 . . . . . . . 8 (𝐹 ∈ (𝐵m 𝑉) → 𝐹:𝑉𝐵)
17 ffvelcdm 7023 . . . . . . . . 9 ((𝐹:𝑉𝐵𝑣𝑉) → (𝐹𝑣) ∈ 𝐵)
1817ex 412 . . . . . . . 8 (𝐹:𝑉𝐵 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
1916, 18syl 17 . . . . . . 7 (𝐹 ∈ (𝐵m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
2019ad2antrl 728 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
2120imp 406 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝐵)
22 ssel 3925 . . . . . . . 8 (𝑉𝑍 → (𝑣𝑉𝑣𝑍))
23223ad2ant3 1135 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑣𝑉𝑣𝑍))
2423adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉𝑣𝑍))
2524imp 406 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → 𝑣𝑍)
26 gsumlsscl.r . . . . . 6 𝑅 = (Scalar‘𝑀)
27 eqid 2733 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
28 gsumlsscl.b . . . . . 6 𝐵 = (Base‘𝑅)
2926, 27, 28, 10lssvscl 20898 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑍𝑆) ∧ ((𝐹𝑣) ∈ 𝐵𝑣𝑍)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝑍)
3015, 21, 25, 29syl12anc 836 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝑍)
3130fmpttd 7057 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝑍)
32 simp1 1136 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑀 ∈ LMod)
33 eqid 2733 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
3433, 10lssss 20879 . . . . . . . . . 10 (𝑍𝑆𝑍 ⊆ (Base‘𝑀))
35 sstr 3940 . . . . . . . . . . 11 ((𝑉𝑍𝑍 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
3635expcom 413 . . . . . . . . . 10 (𝑍 ⊆ (Base‘𝑀) → (𝑉𝑍𝑉 ⊆ (Base‘𝑀)))
3734, 36syl 17 . . . . . . . . 9 (𝑍𝑆 → (𝑉𝑍𝑉 ⊆ (Base‘𝑀)))
3837a1i 11 . . . . . . . 8 (𝑀 ∈ LMod → (𝑍𝑆 → (𝑉𝑍𝑉 ⊆ (Base‘𝑀))))
39383imp 1110 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ⊆ (Base‘𝑀))
40 elpwg 4554 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
417, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
4239, 41mpbird 257 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ∈ 𝒫 (Base‘𝑀))
4332, 42jca 511 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
4443adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
45 simprl 770 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝐹 ∈ (𝐵m 𝑉))
46 simprr 772 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝐹 finSupp (0g𝑅))
4726, 28scmfsupp 48489 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4844, 45, 46, 47syl3anc 1373 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
491, 4, 8, 13, 31, 48gsumsubgcl 19842 . 2 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍)
5049ex 412 1 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → ((𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3438  wss 3899  𝒫 cpw 4551   class class class wbr 5095  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759   finSupp cfsupp 9255  Basecbs 17130  Scalarcsca 17174   ·𝑠 cvsca 17175  0gc0g 17353   Σg cgsu 17354  SubGrpcsubg 19043  Abelcabl 19703  LModclmod 20803  LSubSpclss 20874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-0g 17355  df-gsum 17356  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-cntz 19239  df-cmn 19704  df-abl 19705  df-mgp 20069  df-ur 20110  df-ring 20163  df-lmod 20805  df-lss 20875
This theorem is referenced by:  lincellss  48541
  Copyright terms: Public domain W3C validator