Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumlsscl Structured version   Visualization version   GIF version

Theorem gsumlsscl 48355
Description: Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumlsscl.s 𝑆 = (LSubSp‘𝑀)
gsumlsscl.r 𝑅 = (Scalar‘𝑀)
gsumlsscl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
gsumlsscl ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → ((𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍))
Distinct variable groups:   𝑣,𝐵   𝑣,𝐹   𝑣,𝑀   𝑣,𝑅   𝑣,𝑆   𝑣,𝑉   𝑣,𝑍

Proof of Theorem gsumlsscl
StepHypRef Expression
1 eqid 2735 . . 3 (0g𝑀) = (0g𝑀)
2 lmodabl 20866 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
323ad2ant1 1133 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑀 ∈ Abel)
43adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑀 ∈ Abel)
5 ssexg 5293 . . . . . 6 ((𝑉𝑍𝑍𝑆) → 𝑉 ∈ V)
65ancoms 458 . . . . 5 ((𝑍𝑆𝑉𝑍) → 𝑉 ∈ V)
763adant1 1130 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ∈ V)
87adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑉 ∈ V)
9 3simpa 1148 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
10 gsumlsscl.s . . . . . 6 𝑆 = (LSubSp‘𝑀)
1110lsssubg 20914 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆) → 𝑍 ∈ (SubGrp‘𝑀))
129, 11syl 17 . . . 4 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑍 ∈ (SubGrp‘𝑀))
1312adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝑍 ∈ (SubGrp‘𝑀))
149adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
1514adantr 480 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → (𝑀 ∈ LMod ∧ 𝑍𝑆))
16 elmapi 8863 . . . . . . . 8 (𝐹 ∈ (𝐵m 𝑉) → 𝐹:𝑉𝐵)
17 ffvelcdm 7071 . . . . . . . . 9 ((𝐹:𝑉𝐵𝑣𝑉) → (𝐹𝑣) ∈ 𝐵)
1817ex 412 . . . . . . . 8 (𝐹:𝑉𝐵 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
1916, 18syl 17 . . . . . . 7 (𝐹 ∈ (𝐵m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
2019ad2antrl 728 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝐵))
2120imp 406 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝐵)
22 ssel 3952 . . . . . . . 8 (𝑉𝑍 → (𝑣𝑉𝑣𝑍))
23223ad2ant3 1135 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑣𝑉𝑣𝑍))
2423adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉𝑣𝑍))
2524imp 406 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → 𝑣𝑍)
26 gsumlsscl.r . . . . . 6 𝑅 = (Scalar‘𝑀)
27 eqid 2735 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
28 gsumlsscl.b . . . . . 6 𝐵 = (Base‘𝑅)
2926, 27, 28, 10lssvscl 20912 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑍𝑆) ∧ ((𝐹𝑣) ∈ 𝐵𝑣𝑍)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝑍)
3015, 21, 25, 29syl12anc 836 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝑍)
3130fmpttd 7105 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝑍)
32 simp1 1136 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑀 ∈ LMod)
33 eqid 2735 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
3433, 10lssss 20893 . . . . . . . . . 10 (𝑍𝑆𝑍 ⊆ (Base‘𝑀))
35 sstr 3967 . . . . . . . . . . 11 ((𝑉𝑍𝑍 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
3635expcom 413 . . . . . . . . . 10 (𝑍 ⊆ (Base‘𝑀) → (𝑉𝑍𝑉 ⊆ (Base‘𝑀)))
3734, 36syl 17 . . . . . . . . 9 (𝑍𝑆 → (𝑉𝑍𝑉 ⊆ (Base‘𝑀)))
3837a1i 11 . . . . . . . 8 (𝑀 ∈ LMod → (𝑍𝑆 → (𝑉𝑍𝑉 ⊆ (Base‘𝑀))))
39383imp 1110 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ⊆ (Base‘𝑀))
40 elpwg 4578 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
417, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
4239, 41mpbird 257 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → 𝑉 ∈ 𝒫 (Base‘𝑀))
4332, 42jca 511 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
4443adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
45 simprl 770 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝐹 ∈ (𝐵m 𝑉))
46 simprr 772 . . . 4 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → 𝐹 finSupp (0g𝑅))
4726, 28scmfsupp 48350 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4844, 45, 46, 47syl3anc 1373 . . 3 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
491, 4, 8, 13, 31, 48gsumsubgcl 19901 . 2 (((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) ∧ (𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍)
5049ex 412 1 ((𝑀 ∈ LMod ∧ 𝑍𝑆𝑉𝑍) → ((𝐹 ∈ (𝐵m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840   finSupp cfsupp 9373  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453   Σg cgsu 17454  SubGrpcsubg 19103  Abelcabl 19762  LModclmod 20817  LSubSpclss 20888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889
This theorem is referenced by:  lincellss  48402
  Copyright terms: Public domain W3C validator