![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsss | Structured version Visualization version GIF version |
Description: The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsss | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsval 31115 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | |
2 | imassrn 6068 | . . 3 ⊢ ( +ℎ “ (𝐴 × 𝐵)) ⊆ ran +ℎ | |
3 | ax-hfvadd 30803 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
4 | frn 6723 | . . . 4 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → ran +ℎ ⊆ ℋ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ran +ℎ ⊆ ℋ |
6 | 2, 5 | sstri 3987 | . 2 ⊢ ( +ℎ “ (𝐴 × 𝐵)) ⊆ ℋ |
7 | 1, 6 | eqsstrdi 4032 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3944 × cxp 5670 ran crn 5673 “ cima 5675 ⟶wf 6538 (class class class)co 7414 ℋchba 30722 +ℎ cva 30723 Sℋ csh 30731 +ℋ cph 30734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-hilex 30802 ax-hfvadd 30803 ax-hvcom 30804 ax-hvass 30805 ax-hv0cl 30806 ax-hvaddid 30807 ax-hfvmul 30808 ax-hvmulid 30809 ax-hvdistr2 30812 ax-hvmul0 30813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 df-neg 11471 df-grpo 30296 df-ablo 30348 df-hvsub 30774 df-shs 31111 |
This theorem is referenced by: shscli 31120 pjhth 31196 pjpreeq 31201 |
Copyright terms: Public domain | W3C validator |