Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shsub1 | Structured version Visualization version GIF version |
Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsub1 | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsel1 29208 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 +ℋ 𝐵))) | |
2 | 1 | ssrdv 3900 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ⊆ wss 3860 (class class class)co 7155 Sℋ csh 28815 +ℋ cph 28818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-hilex 28886 ax-hfvadd 28887 ax-hvcom 28888 ax-hvass 28889 ax-hv0cl 28890 ax-hvaddid 28891 ax-hfvmul 28892 ax-hvmulid 28893 ax-hvdistr2 28896 ax-hvmul0 28897 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-ltxr 10723 df-sub 10915 df-neg 10916 df-grpo 28380 df-ablo 28432 df-hvsub 28858 df-sh 29094 df-shs 29195 |
This theorem is referenced by: shsub2 29212 shub1 29269 sumdmdlem 30305 |
Copyright terms: Public domain | W3C validator |