| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdin | Structured version Visualization version GIF version | ||
| Description: Subspace intersection is preserved by the map defined by df-mapd 41672. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdin.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdin.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdin.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdin.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdin.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdin.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| mapdin.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mapdin | ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4184 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | |
| 2 | mapdin.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | mapdin.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdin.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 5 | mapdin.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 6 | mapdin.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 2, 3, 6 | dvhlmod 41157 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | mapdin.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 9 | mapdin.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 10 | 4 | lssincl 20898 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ∩ 𝑌) ∈ 𝑆) |
| 11 | 7, 8, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ 𝑆) |
| 12 | 2, 3, 4, 5, 6, 11, 8 | mapdord 41685 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑋)) |
| 13 | 1, 12 | mpbiri 258 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋)) |
| 14 | inss2 4185 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | |
| 15 | 2, 3, 4, 5, 6, 11, 9 | mapdord 41685 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑌)) |
| 16 | 14, 15 | mpbiri 258 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌)) |
| 17 | 13, 16 | ssind 4188 | . 2 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 18 | eqid 2731 | . . . . 5 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
| 19 | eqid 2731 | . . . . . . 7 ⊢ (LSubSp‘((LCDual‘𝐾)‘𝑊)) = (LSubSp‘((LCDual‘𝐾)‘𝑊)) | |
| 20 | 2, 5, 3, 4, 18, 19, 6, 8 | mapdcl2 41703 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 21 | 2, 5, 18, 19, 6 | mapdrn2 41698 | . . . . . 6 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 22 | 20, 21 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
| 23 | 2, 5, 3, 4, 18, 19, 6, 9 | mapdcl2 41703 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 24 | 23, 21 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
| 25 | 2, 5, 3, 18, 6, 22, 24 | mapdincl 41708 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 26 | 2, 5, 6, 25 | mapdcnvid2 41704 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 27 | inss1 4184 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑋) | |
| 28 | 26, 27 | eqsstrdi 3974 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋)) |
| 29 | 2, 18, 6 | lcdlmod 41639 | . . . . . . . . . 10 ⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
| 30 | 19 | lssincl 20898 | . . . . . . . . . 10 ⊢ ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 31 | 29, 20, 23, 30 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 32 | 31, 21 | eleqtrrd 2834 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 33 | 2, 5, 3, 4, 6, 32 | mapdcnvcl 41699 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ∈ 𝑆) |
| 34 | 2, 3, 4, 5, 6, 33, 8 | mapdord 41685 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋)) |
| 35 | 28, 34 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋) |
| 36 | 2, 5, 6, 32 | mapdcnvid2 41704 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 37 | inss2 4185 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑌) | |
| 38 | 36, 37 | eqsstrdi 3974 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌)) |
| 39 | 2, 3, 4, 5, 6, 33, 9 | mapdord 41685 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌)) |
| 40 | 38, 39 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌) |
| 41 | 35, 40 | ssind 4188 | . . . 4 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌)) |
| 42 | 2, 3, 4, 5, 6, 33, 11 | mapdord 41685 | . . . 4 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌)) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌))) |
| 43 | 41, 42 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
| 44 | 26, 43 | eqsstrrd 3965 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
| 45 | 17, 44 | eqssd 3947 | 1 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ◡ccnv 5613 ran crn 5615 ‘cfv 6481 LModclmod 20793 LSubSpclss 20864 HLchlt 39397 LHypclh 40031 DVecHcdvh 41125 LCDualclcd 41633 mapdcmpd 41671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-oppg 19258 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39023 df-lshyp 39024 df-lcv 39066 df-lfl 39105 df-lkr 39133 df-ldual 39171 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-llines 39545 df-lplanes 39546 df-lvols 39547 df-lines 39548 df-psubsp 39550 df-pmap 39551 df-padd 39843 df-lhyp 40035 df-laut 40036 df-ldil 40151 df-ltrn 40152 df-trl 40206 df-tgrp 40790 df-tendo 40802 df-edring 40804 df-dveca 41050 df-disoa 41076 df-dvech 41126 df-dib 41186 df-dic 41220 df-dih 41276 df-doch 41395 df-djh 41442 df-lcdual 41634 df-mapd 41672 |
| This theorem is referenced by: mapdheq4lem 41778 mapdh6lem1N 41780 mapdh6lem2N 41781 hdmap1l6lem1 41854 hdmap1l6lem2 41855 |
| Copyright terms: Public domain | W3C validator |