Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdin | Structured version Visualization version GIF version |
Description: Subspace intersection is preserved by the map defined by df-mapd 39403. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.) |
Ref | Expression |
---|---|
mapdin.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdin.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdin.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdin.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdin.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdin.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
mapdin.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mapdin | ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4158 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | |
2 | mapdin.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | mapdin.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdin.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | mapdin.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
6 | mapdin.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 2, 3, 6 | dvhlmod 38888 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | mapdin.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
9 | mapdin.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
10 | 4 | lssincl 20027 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ∩ 𝑌) ∈ 𝑆) |
11 | 7, 8, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ 𝑆) |
12 | 2, 3, 4, 5, 6, 11, 8 | mapdord 39416 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑋)) |
13 | 1, 12 | mpbiri 261 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋)) |
14 | inss2 4159 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | |
15 | 2, 3, 4, 5, 6, 11, 9 | mapdord 39416 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑌)) |
16 | 14, 15 | mpbiri 261 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌)) |
17 | 13, 16 | ssind 4162 | . 2 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
18 | eqid 2738 | . . . . 5 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
19 | eqid 2738 | . . . . . . 7 ⊢ (LSubSp‘((LCDual‘𝐾)‘𝑊)) = (LSubSp‘((LCDual‘𝐾)‘𝑊)) | |
20 | 2, 5, 3, 4, 18, 19, 6, 8 | mapdcl2 39434 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
21 | 2, 5, 18, 19, 6 | mapdrn2 39429 | . . . . . 6 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
22 | 20, 21 | eleqtrrd 2842 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
23 | 2, 5, 3, 4, 18, 19, 6, 9 | mapdcl2 39434 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
24 | 23, 21 | eleqtrrd 2842 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
25 | 2, 5, 3, 18, 6, 22, 24 | mapdincl 39439 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
26 | 2, 5, 6, 25 | mapdcnvid2 39435 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
27 | inss1 4158 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑋) | |
28 | 26, 27 | eqsstrdi 3970 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋)) |
29 | 2, 18, 6 | lcdlmod 39370 | . . . . . . . . . 10 ⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
30 | 19 | lssincl 20027 | . . . . . . . . . 10 ⊢ ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
31 | 29, 20, 23, 30 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
32 | 31, 21 | eleqtrrd 2842 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
33 | 2, 5, 3, 4, 6, 32 | mapdcnvcl 39430 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ∈ 𝑆) |
34 | 2, 3, 4, 5, 6, 33, 8 | mapdord 39416 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋)) |
35 | 28, 34 | mpbid 235 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋) |
36 | 2, 5, 6, 32 | mapdcnvid2 39435 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
37 | inss2 4159 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑌) | |
38 | 36, 37 | eqsstrdi 3970 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌)) |
39 | 2, 3, 4, 5, 6, 33, 9 | mapdord 39416 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌)) |
40 | 38, 39 | mpbid 235 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌) |
41 | 35, 40 | ssind 4162 | . . . 4 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌)) |
42 | 2, 3, 4, 5, 6, 33, 11 | mapdord 39416 | . . . 4 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌)) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌))) |
43 | 41, 42 | mpbird 260 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
44 | 26, 43 | eqsstrrd 3955 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
45 | 17, 44 | eqssd 3933 | 1 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∩ cin 3880 ⊆ wss 3881 ◡ccnv 5565 ran crn 5567 ‘cfv 6398 LModclmod 19924 LSubSpclss 19993 HLchlt 37128 LHypclh 37762 DVecHcdvh 38856 LCDualclcd 39364 mapdcmpd 39402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-riotaBAD 36731 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-tpos 7989 df-undef 8036 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-sca 16843 df-vsca 16844 df-0g 16971 df-mre 17114 df-mrc 17115 df-acs 17117 df-proset 17827 df-poset 17845 df-plt 17861 df-lub 17877 df-glb 17878 df-join 17879 df-meet 17880 df-p0 17956 df-p1 17957 df-lat 17963 df-clat 18030 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-grp 18393 df-minusg 18394 df-sbg 18395 df-subg 18565 df-cntz 18736 df-oppg 18763 df-lsm 19050 df-cmn 19197 df-abl 19198 df-mgp 19530 df-ur 19542 df-ring 19589 df-oppr 19666 df-dvdsr 19684 df-unit 19685 df-invr 19715 df-dvr 19726 df-drng 19794 df-lmod 19926 df-lss 19994 df-lsp 20034 df-lvec 20165 df-lsatoms 36754 df-lshyp 36755 df-lcv 36797 df-lfl 36836 df-lkr 36864 df-ldual 36902 df-oposet 36954 df-ol 36956 df-oml 36957 df-covers 37044 df-ats 37045 df-atl 37076 df-cvlat 37100 df-hlat 37129 df-llines 37276 df-lplanes 37277 df-lvols 37278 df-lines 37279 df-psubsp 37281 df-pmap 37282 df-padd 37574 df-lhyp 37766 df-laut 37767 df-ldil 37882 df-ltrn 37883 df-trl 37937 df-tgrp 38521 df-tendo 38533 df-edring 38535 df-dveca 38781 df-disoa 38807 df-dvech 38857 df-dib 38917 df-dic 38951 df-dih 39007 df-doch 39126 df-djh 39173 df-lcdual 39365 df-mapd 39403 |
This theorem is referenced by: mapdheq4lem 39509 mapdh6lem1N 39511 mapdh6lem2N 39512 hdmap1l6lem1 39585 hdmap1l6lem2 39586 |
Copyright terms: Public domain | W3C validator |