![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdin | Structured version Visualization version GIF version |
Description: Subspace intersection is preserved by the map defined by df-mapd 37701. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.) |
Ref | Expression |
---|---|
mapdin.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdin.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdin.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdin.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdin.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdin.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
mapdin.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mapdin | ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4058 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | |
2 | mapdin.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | mapdin.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdin.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | mapdin.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
6 | mapdin.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 2, 3, 6 | dvhlmod 37186 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | mapdin.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
9 | mapdin.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
10 | 4 | lssincl 19325 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ∩ 𝑌) ∈ 𝑆) |
11 | 7, 8, 9, 10 | syl3anc 1496 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ 𝑆) |
12 | 2, 3, 4, 5, 6, 11, 8 | mapdord 37714 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑋)) |
13 | 1, 12 | mpbiri 250 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋)) |
14 | inss2 4059 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | |
15 | 2, 3, 4, 5, 6, 11, 9 | mapdord 37714 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑌)) |
16 | 14, 15 | mpbiri 250 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌)) |
17 | 13, 16 | ssind 4062 | . 2 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
18 | eqid 2826 | . . . . 5 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
19 | eqid 2826 | . . . . . . 7 ⊢ (LSubSp‘((LCDual‘𝐾)‘𝑊)) = (LSubSp‘((LCDual‘𝐾)‘𝑊)) | |
20 | 2, 5, 3, 4, 18, 19, 6, 8 | mapdcl2 37732 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
21 | 2, 5, 18, 19, 6 | mapdrn2 37727 | . . . . . 6 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
22 | 20, 21 | eleqtrrd 2910 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
23 | 2, 5, 3, 4, 18, 19, 6, 9 | mapdcl2 37732 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
24 | 23, 21 | eleqtrrd 2910 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
25 | 2, 5, 3, 18, 6, 22, 24 | mapdincl 37737 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
26 | 2, 5, 6, 25 | mapdcnvid2 37733 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
27 | inss1 4058 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑋) | |
28 | 26, 27 | syl6eqss 3881 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋)) |
29 | 2, 18, 6 | lcdlmod 37668 | . . . . . . . . . 10 ⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
30 | 19 | lssincl 19325 | . . . . . . . . . 10 ⊢ ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
31 | 29, 20, 23, 30 | syl3anc 1496 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
32 | 31, 21 | eleqtrrd 2910 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
33 | 2, 5, 3, 4, 6, 32 | mapdcnvcl 37728 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ∈ 𝑆) |
34 | 2, 3, 4, 5, 6, 33, 8 | mapdord 37714 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋)) |
35 | 28, 34 | mpbid 224 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋) |
36 | 2, 5, 6, 32 | mapdcnvid2 37733 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
37 | inss2 4059 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑌) | |
38 | 36, 37 | syl6eqss 3881 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌)) |
39 | 2, 3, 4, 5, 6, 33, 9 | mapdord 37714 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌)) |
40 | 38, 39 | mpbid 224 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌) |
41 | 35, 40 | ssind 4062 | . . . 4 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌)) |
42 | 2, 3, 4, 5, 6, 33, 11 | mapdord 37714 | . . . 4 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌)) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌))) |
43 | 41, 42 | mpbird 249 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
44 | 26, 43 | eqsstr3d 3866 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
45 | 17, 44 | eqssd 3845 | 1 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∩ cin 3798 ⊆ wss 3799 ◡ccnv 5342 ran crn 5344 ‘cfv 6124 LModclmod 19220 LSubSpclss 19289 HLchlt 35426 LHypclh 36060 DVecHcdvh 37154 LCDualclcd 37662 mapdcmpd 37700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-riotaBAD 35029 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-om 7328 df-1st 7429 df-2nd 7430 df-tpos 7618 df-undef 7665 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-0g 16456 df-mre 16600 df-mrc 16601 df-acs 16603 df-proset 17282 df-poset 17300 df-plt 17312 df-lub 17328 df-glb 17329 df-join 17330 df-meet 17331 df-p0 17393 df-p1 17394 df-lat 17400 df-clat 17462 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-submnd 17690 df-grp 17780 df-minusg 17781 df-sbg 17782 df-subg 17943 df-cntz 18101 df-oppg 18127 df-lsm 18403 df-cmn 18549 df-abl 18550 df-mgp 18845 df-ur 18857 df-ring 18904 df-oppr 18978 df-dvdsr 18996 df-unit 18997 df-invr 19027 df-dvr 19038 df-drng 19106 df-lmod 19222 df-lss 19290 df-lsp 19332 df-lvec 19463 df-lsatoms 35052 df-lshyp 35053 df-lcv 35095 df-lfl 35134 df-lkr 35162 df-ldual 35200 df-oposet 35252 df-ol 35254 df-oml 35255 df-covers 35342 df-ats 35343 df-atl 35374 df-cvlat 35398 df-hlat 35427 df-llines 35574 df-lplanes 35575 df-lvols 35576 df-lines 35577 df-psubsp 35579 df-pmap 35580 df-padd 35872 df-lhyp 36064 df-laut 36065 df-ldil 36180 df-ltrn 36181 df-trl 36235 df-tgrp 36819 df-tendo 36831 df-edring 36833 df-dveca 37079 df-disoa 37105 df-dvech 37155 df-dib 37215 df-dic 37249 df-dih 37305 df-doch 37424 df-djh 37471 df-lcdual 37663 df-mapd 37701 |
This theorem is referenced by: mapdheq4lem 37807 mapdh6lem1N 37809 mapdh6lem2N 37810 hdmap1l6lem1 37883 hdmap1l6lem2 37884 |
Copyright terms: Public domain | W3C validator |