| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdin | Structured version Visualization version GIF version | ||
| Description: Subspace intersection is preserved by the map defined by df-mapd 41619. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdin.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdin.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdin.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdin.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdin.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdin.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| mapdin.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mapdin | ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4200 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | |
| 2 | mapdin.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | mapdin.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdin.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 5 | mapdin.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 6 | mapdin.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 2, 3, 6 | dvhlmod 41104 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | mapdin.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 9 | mapdin.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 10 | 4 | lssincl 20871 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ∩ 𝑌) ∈ 𝑆) |
| 11 | 7, 8, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ 𝑆) |
| 12 | 2, 3, 4, 5, 6, 11, 8 | mapdord 41632 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑋)) |
| 13 | 1, 12 | mpbiri 258 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋)) |
| 14 | inss2 4201 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | |
| 15 | 2, 3, 4, 5, 6, 11, 9 | mapdord 41632 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑌)) |
| 16 | 14, 15 | mpbiri 258 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌)) |
| 17 | 13, 16 | ssind 4204 | . 2 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 18 | eqid 2729 | . . . . 5 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (LSubSp‘((LCDual‘𝐾)‘𝑊)) = (LSubSp‘((LCDual‘𝐾)‘𝑊)) | |
| 20 | 2, 5, 3, 4, 18, 19, 6, 8 | mapdcl2 41650 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 21 | 2, 5, 18, 19, 6 | mapdrn2 41645 | . . . . . 6 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 22 | 20, 21 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
| 23 | 2, 5, 3, 4, 18, 19, 6, 9 | mapdcl2 41650 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 24 | 23, 21 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
| 25 | 2, 5, 3, 18, 6, 22, 24 | mapdincl 41655 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 26 | 2, 5, 6, 25 | mapdcnvid2 41651 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 27 | inss1 4200 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑋) | |
| 28 | 26, 27 | eqsstrdi 3991 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋)) |
| 29 | 2, 18, 6 | lcdlmod 41586 | . . . . . . . . . 10 ⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
| 30 | 19 | lssincl 20871 | . . . . . . . . . 10 ⊢ ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 31 | 29, 20, 23, 30 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 32 | 31, 21 | eleqtrrd 2831 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 33 | 2, 5, 3, 4, 6, 32 | mapdcnvcl 41646 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ∈ 𝑆) |
| 34 | 2, 3, 4, 5, 6, 33, 8 | mapdord 41632 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋)) |
| 35 | 28, 34 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋) |
| 36 | 2, 5, 6, 32 | mapdcnvid2 41651 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 37 | inss2 4201 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑌) | |
| 38 | 36, 37 | eqsstrdi 3991 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌)) |
| 39 | 2, 3, 4, 5, 6, 33, 9 | mapdord 41632 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌)) |
| 40 | 38, 39 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌) |
| 41 | 35, 40 | ssind 4204 | . . . 4 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌)) |
| 42 | 2, 3, 4, 5, 6, 33, 11 | mapdord 41632 | . . . 4 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌)) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌))) |
| 43 | 41, 42 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
| 44 | 26, 43 | eqsstrrd 3982 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
| 45 | 17, 44 | eqssd 3964 | 1 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ◡ccnv 5637 ran crn 5639 ‘cfv 6511 LModclmod 20766 LSubSpclss 20837 HLchlt 39343 LHypclh 39978 DVecHcdvh 41072 LCDualclcd 41580 mapdcmpd 41618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-nzr 20422 df-rlreg 20603 df-domn 20604 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lshyp 38970 df-lcv 39012 df-lfl 39051 df-lkr 39079 df-ldual 39117 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tgrp 40737 df-tendo 40749 df-edring 40751 df-dveca 40997 df-disoa 41023 df-dvech 41073 df-dib 41133 df-dic 41167 df-dih 41223 df-doch 41342 df-djh 41389 df-lcdual 41581 df-mapd 41619 |
| This theorem is referenced by: mapdheq4lem 41725 mapdh6lem1N 41727 mapdh6lem2N 41728 hdmap1l6lem1 41801 hdmap1l6lem2 41802 |
| Copyright terms: Public domain | W3C validator |