| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdin | Structured version Visualization version GIF version | ||
| Description: Subspace intersection is preserved by the map defined by df-mapd 41604. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdin.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdin.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdin.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdin.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdin.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdin.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| mapdin.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mapdin | ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4188 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | |
| 2 | mapdin.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | mapdin.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdin.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 5 | mapdin.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 6 | mapdin.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 2, 3, 6 | dvhlmod 41089 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | mapdin.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 9 | mapdin.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 10 | 4 | lssincl 20868 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ∩ 𝑌) ∈ 𝑆) |
| 11 | 7, 8, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ 𝑆) |
| 12 | 2, 3, 4, 5, 6, 11, 8 | mapdord 41617 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑋)) |
| 13 | 1, 12 | mpbiri 258 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑋)) |
| 14 | inss2 4189 | . . . 4 ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | |
| 15 | 2, 3, 4, 5, 6, 11, 9 | mapdord 41617 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌) ↔ (𝑋 ∩ 𝑌) ⊆ 𝑌)) |
| 16 | 14, 15 | mpbiri 258 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ (𝑀‘𝑌)) |
| 17 | 13, 16 | ssind 4192 | . 2 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) ⊆ ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 18 | eqid 2729 | . . . . 5 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (LSubSp‘((LCDual‘𝐾)‘𝑊)) = (LSubSp‘((LCDual‘𝐾)‘𝑊)) | |
| 20 | 2, 5, 3, 4, 18, 19, 6, 8 | mapdcl2 41635 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 21 | 2, 5, 18, 19, 6 | mapdrn2 41630 | . . . . . 6 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 22 | 20, 21 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
| 23 | 2, 5, 3, 4, 18, 19, 6, 9 | mapdcl2 41635 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 24 | 23, 21 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
| 25 | 2, 5, 3, 18, 6, 22, 24 | mapdincl 41640 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 26 | 2, 5, 6, 25 | mapdcnvid2 41636 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 27 | inss1 4188 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑋) | |
| 28 | 26, 27 | eqsstrdi 3980 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋)) |
| 29 | 2, 18, 6 | lcdlmod 41571 | . . . . . . . . . 10 ⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
| 30 | 19 | lssincl 20868 | . . . . . . . . . 10 ⊢ ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑀‘𝑋) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑀‘𝑌) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 31 | 29, 20, 23, 30 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ (LSubSp‘((LCDual‘𝐾)‘𝑊))) |
| 32 | 31, 21 | eleqtrrd 2831 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 33 | 2, 5, 3, 4, 6, 32 | mapdcnvcl 41631 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ∈ 𝑆) |
| 34 | 2, 3, 4, 5, 6, 33, 8 | mapdord 41617 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑋) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋)) |
| 35 | 28, 34 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑋) |
| 36 | 2, 5, 6, 32 | mapdcnvid2 41636 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| 37 | inss2 4189 | . . . . . . 7 ⊢ ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘𝑌) | |
| 38 | 36, 37 | eqsstrdi 3980 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌)) |
| 39 | 2, 3, 4, 5, 6, 33, 9 | mapdord 41617 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘𝑌) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌)) |
| 40 | 38, 39 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ 𝑌) |
| 41 | 35, 40 | ssind 4192 | . . . 4 ⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌)) |
| 42 | 2, 3, 4, 5, 6, 33, 11 | mapdord 41617 | . . . 4 ⊢ (𝜑 → ((𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌)) ↔ (◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌))) ⊆ (𝑋 ∩ 𝑌))) |
| 43 | 41, 42 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ∩ (𝑀‘𝑌)))) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
| 44 | 26, 43 | eqsstrrd 3971 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) ∩ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∩ 𝑌))) |
| 45 | 17, 44 | eqssd 3953 | 1 ⊢ (𝜑 → (𝑀‘(𝑋 ∩ 𝑌)) = ((𝑀‘𝑋) ∩ (𝑀‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ◡ccnv 5618 ran crn 5620 ‘cfv 6482 LModclmod 20763 LSubSpclss 20834 HLchlt 39329 LHypclh 39963 DVecHcdvh 41057 LCDualclcd 41565 mapdcmpd 41603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-riotaBAD 38932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-undef 8206 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38955 df-lshyp 38956 df-lcv 38998 df-lfl 39037 df-lkr 39065 df-ldual 39103 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tgrp 40722 df-tendo 40734 df-edring 40736 df-dveca 40982 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 df-lcdual 41566 df-mapd 41604 |
| This theorem is referenced by: mapdheq4lem 41710 mapdh6lem1N 41712 mapdh6lem2N 41713 hdmap1l6lem1 41786 hdmap1l6lem2 41787 |
| Copyright terms: Public domain | W3C validator |