Step | Hyp | Ref
| Expression |
1 | | lspdisj.w |
. . . . . . . . . 10
β’ (π β π β LVec) |
2 | | lveclmod 20861 |
. . . . . . . . . 10
β’ (π β LVec β π β LMod) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
β’ (π β π β LMod) |
4 | | lspdisj.x |
. . . . . . . . 9
β’ (π β π β π) |
5 | | eqid 2730 |
. . . . . . . . . 10
β’
(Scalarβπ) =
(Scalarβπ) |
6 | | eqid 2730 |
. . . . . . . . . 10
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
7 | | lspdisj.v |
. . . . . . . . . 10
β’ π = (Baseβπ) |
8 | | eqid 2730 |
. . . . . . . . . 10
β’ (
Β·π βπ) = ( Β·π
βπ) |
9 | | lspdisj.n |
. . . . . . . . . 10
β’ π = (LSpanβπ) |
10 | 5, 6, 7, 8, 9 | lspsnel 20758 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π) β (π£ β (πβ{π}) β βπ β (Baseβ(Scalarβπ))π£ = (π( Β·π
βπ)π))) |
11 | 3, 4, 10 | syl2anc 582 |
. . . . . . . 8
β’ (π β (π£ β (πβ{π}) β βπ β (Baseβ(Scalarβπ))π£ = (π( Β·π
βπ)π))) |
12 | 11 | biimpa 475 |
. . . . . . 7
β’ ((π β§ π£ β (πβ{π})) β βπ β (Baseβ(Scalarβπ))π£ = (π( Β·π
βπ)π)) |
13 | 12 | adantrr 713 |
. . . . . 6
β’ ((π β§ (π£ β (πβ{π}) β§ π£ β π)) β βπ β (Baseβ(Scalarβπ))π£ = (π( Β·π
βπ)π)) |
14 | | simprr 769 |
. . . . . . . . . 10
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π£ = (π( Β·π
βπ)π)) |
15 | | lspdisj.e |
. . . . . . . . . . . . 13
β’ (π β Β¬ π β π) |
16 | 15 | ad2antrr 722 |
. . . . . . . . . . . 12
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β Β¬ π β π) |
17 | | simplr 765 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π£ β π) |
18 | 14, 17 | eqeltrrd 2832 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β π) |
19 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
20 | | lspdisj.s |
. . . . . . . . . . . . . . . 16
β’ π = (LSubSpβπ) |
21 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π β LVec) |
22 | | lspdisj.u |
. . . . . . . . . . . . . . . . 17
β’ (π β π β π) |
23 | 22 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π β π) |
24 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π β π) |
25 | | simprl 767 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π β (Baseβ(Scalarβπ))) |
26 | 7, 8, 5, 6, 19, 20, 21, 23, 24, 25 | lssvs0or 20868 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β ((π( Β·π
βπ)π) β π β (π = (0gβ(Scalarβπ)) β¨ π β π))) |
27 | 18, 26 | mpbid 231 |
. . . . . . . . . . . . . 14
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β (π = (0gβ(Scalarβπ)) β¨ π β π)) |
28 | 27 | orcomd 867 |
. . . . . . . . . . . . 13
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β (π β π β¨ π = (0gβ(Scalarβπ)))) |
29 | 28 | ord 860 |
. . . . . . . . . . . 12
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β (Β¬ π β π β π = (0gβ(Scalarβπ)))) |
30 | 16, 29 | mpd 15 |
. . . . . . . . . . 11
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π = (0gβ(Scalarβπ))) |
31 | 30 | oveq1d 7426 |
. . . . . . . . . 10
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) =
((0gβ(Scalarβπ))( Β·π
βπ)π)) |
32 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π β LMod) |
33 | | lspdisj.o |
. . . . . . . . . . . 12
β’ 0 =
(0gβπ) |
34 | 7, 5, 8, 19, 33 | lmod0vs 20649 |
. . . . . . . . . . 11
β’ ((π β LMod β§ π β π) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
35 | 32, 24, 34 | syl2anc 582 |
. . . . . . . . . 10
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
36 | 14, 31, 35 | 3eqtrd 2774 |
. . . . . . . . 9
β’ (((π β§ π£ β π) β§ (π β (Baseβ(Scalarβπ)) β§ π£ = (π( Β·π
βπ)π))) β π£ = 0 ) |
37 | 36 | exp32 419 |
. . . . . . . 8
β’ ((π β§ π£ β π) β (π β (Baseβ(Scalarβπ)) β (π£ = (π( Β·π
βπ)π) β π£ = 0 ))) |
38 | 37 | adantrl 712 |
. . . . . . 7
β’ ((π β§ (π£ β (πβ{π}) β§ π£ β π)) β (π β (Baseβ(Scalarβπ)) β (π£ = (π( Β·π
βπ)π) β π£ = 0 ))) |
39 | 38 | rexlimdv 3151 |
. . . . . 6
β’ ((π β§ (π£ β (πβ{π}) β§ π£ β π)) β (βπ β (Baseβ(Scalarβπ))π£ = (π( Β·π
βπ)π) β π£ = 0 )) |
40 | 13, 39 | mpd 15 |
. . . . 5
β’ ((π β§ (π£ β (πβ{π}) β§ π£ β π)) β π£ = 0 ) |
41 | 40 | ex 411 |
. . . 4
β’ (π β ((π£ β (πβ{π}) β§ π£ β π) β π£ = 0 )) |
42 | | elin 3963 |
. . . 4
β’ (π£ β ((πβ{π}) β© π) β (π£ β (πβ{π}) β§ π£ β π)) |
43 | | velsn 4643 |
. . . 4
β’ (π£ β { 0 } β π£ = 0 ) |
44 | 41, 42, 43 | 3imtr4g 295 |
. . 3
β’ (π β (π£ β ((πβ{π}) β© π) β π£ β { 0 })) |
45 | 44 | ssrdv 3987 |
. 2
β’ (π β ((πβ{π}) β© π) β { 0 }) |
46 | 7, 20, 9 | lspsncl 20732 |
. . . . 5
β’ ((π β LMod β§ π β π) β (πβ{π}) β π) |
47 | 3, 4, 46 | syl2anc 582 |
. . . 4
β’ (π β (πβ{π}) β π) |
48 | 33, 20 | lss0ss 20703 |
. . . 4
β’ ((π β LMod β§ (πβ{π}) β π) β { 0 } β (πβ{π})) |
49 | 3, 47, 48 | syl2anc 582 |
. . 3
β’ (π β { 0 } β (πβ{π})) |
50 | 33, 20 | lss0ss 20703 |
. . . 4
β’ ((π β LMod β§ π β π) β { 0 } β π) |
51 | 3, 22, 50 | syl2anc 582 |
. . 3
β’ (π β { 0 } β π) |
52 | 49, 51 | ssind 4231 |
. 2
β’ (π β { 0 } β ((πβ{π}) β© π)) |
53 | 45, 52 | eqssd 3998 |
1
β’ (π β ((πβ{π}) β© π) = { 0 }) |