MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj Structured version   Visualization version   GIF version

Theorem lspdisj 19397
Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015.)
Hypotheses
Ref Expression
lspdisj.v 𝑉 = (Base‘𝑊)
lspdisj.o 0 = (0g𝑊)
lspdisj.n 𝑁 = (LSpan‘𝑊)
lspdisj.s 𝑆 = (LSubSp‘𝑊)
lspdisj.w (𝜑𝑊 ∈ LVec)
lspdisj.u (𝜑𝑈𝑆)
lspdisj.x (𝜑𝑋𝑉)
lspdisj.e (𝜑 → ¬ 𝑋𝑈)
Assertion
Ref Expression
lspdisj (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })

Proof of Theorem lspdisj
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspdisj.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 19378 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspdisj.x . . . . . . . . 9 (𝜑𝑋𝑉)
5 eqid 2765 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2765 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 lspdisj.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
8 eqid 2765 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
9 lspdisj.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 7, 8, 9lspsnel 19275 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
113, 4, 10syl2anc 579 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
1211biimpa 468 . . . . . . 7 ((𝜑𝑣 ∈ (𝑁‘{𝑋})) → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋))
1312adantrr 708 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋))
14 simprr 789 . . . . . . . . . 10 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑣 = (𝑘( ·𝑠𝑊)𝑋))
15 lspdisj.e . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋𝑈)
1615ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → ¬ 𝑋𝑈)
17 simplr 785 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑣𝑈)
1814, 17eqeltrrd 2845 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈)
19 eqid 2765 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
20 lspdisj.s . . . . . . . . . . . . . . . 16 𝑆 = (LSubSp‘𝑊)
211ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑊 ∈ LVec)
22 lspdisj.u . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝑆)
2322ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑈𝑆)
244ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑋𝑉)
25 simprl 787 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
267, 8, 5, 6, 19, 20, 21, 23, 24, 25lssvs0or 19382 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 ↔ (𝑘 = (0g‘(Scalar‘𝑊)) ∨ 𝑋𝑈)))
2718, 26mpbid 223 . . . . . . . . . . . . . 14 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑘 = (0g‘(Scalar‘𝑊)) ∨ 𝑋𝑈))
2827orcomd 897 . . . . . . . . . . . . 13 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑋𝑈𝑘 = (0g‘(Scalar‘𝑊))))
2928ord 890 . . . . . . . . . . . 12 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (¬ 𝑋𝑈𝑘 = (0g‘(Scalar‘𝑊))))
3016, 29mpd 15 . . . . . . . . . . 11 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑘 = (0g‘(Scalar‘𝑊)))
3130oveq1d 6857 . . . . . . . . . 10 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
323ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑊 ∈ LMod)
33 lspdisj.o . . . . . . . . . . . 12 0 = (0g𝑊)
347, 5, 8, 19, 33lmod0vs 19165 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
3532, 24, 34syl2anc 579 . . . . . . . . . 10 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
3614, 31, 353eqtrd 2803 . . . . . . . . 9 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑣 = 0 )
3736exp32 411 . . . . . . . 8 ((𝜑𝑣𝑈) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 )))
3837adantrl 707 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 )))
3938rexlimdv 3177 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4013, 39mpd 15 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → 𝑣 = 0 )
4140ex 401 . . . 4 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈) → 𝑣 = 0 ))
42 elin 3958 . . . 4 (𝑣 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈))
43 velsn 4350 . . . 4 (𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
4441, 42, 433imtr4g 287 . . 3 (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑣 ∈ { 0 }))
4544ssrdv 3767 . 2 (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) ⊆ { 0 })
467, 20, 9lspsncl 19249 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
473, 4, 46syl2anc 579 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
4833, 20lss0ss 19218 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ 𝑆) → { 0 } ⊆ (𝑁‘{𝑋}))
493, 47, 48syl2anc 579 . . 3 (𝜑 → { 0 } ⊆ (𝑁‘{𝑋}))
5033, 20lss0ss 19218 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
513, 22, 50syl2anc 579 . . 3 (𝜑 → { 0 } ⊆ 𝑈)
5249, 51ssind 3996 . 2 (𝜑 → { 0 } ⊆ ((𝑁‘{𝑋}) ∩ 𝑈))
5345, 52eqssd 3778 1 (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wrex 3056  cin 3731  wss 3732  {csn 4334  cfv 6068  (class class class)co 6842  Basecbs 16132  Scalarcsca 16219   ·𝑠 cvsca 16220  0gc0g 16368  LModclmod 19132  LSubSpclss 19201  LSpanclspn 19243  LVecclvec 19374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-sbg 17696  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lvec 19375
This theorem is referenced by:  lspdisjb  19398  lspdisj2  19399  lvecindp  19411
  Copyright terms: Public domain W3C validator