MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nno Structured version   Visualization version   GIF version

Theorem nno 16328
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
nno ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 12857 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
2 nnnn0 12425 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 nn0o1gt2 16327 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
42, 3sylan 580 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
5 eqneqall 2936 . . . . . . 7 (𝑁 = 1 → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
65a1d 25 . . . . . 6 (𝑁 = 1 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
7 nn0z 12530 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
8 peano2zm 12552 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
97, 8syl 17 . . . . . . . . . . 11 (((𝑁 + 1) / 2) ∈ ℕ0 → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
109ad2antlr 727 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
11 2cn 12237 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1211mullidi 11155 . . . . . . . . . . . . . 14 (1 · 2) = 2
13 nnre 12169 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1413ltp1d 12089 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 < (𝑁 + 1))
16 2re 12236 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
17 peano2nn 12174 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1817nnred 12177 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
19 lttr 11226 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2016, 13, 18, 19mp3an2i 1468 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2120expdimp 452 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 < (𝑁 + 1) → 2 < (𝑁 + 1)))
2215, 21mpd 15 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < (𝑁 + 1))
2312, 22eqbrtrid 5137 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 · 2) < (𝑁 + 1))
24 1red 11151 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
2518adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 + 1) ∈ ℝ)
26 2rp 12932 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
2726a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 ∈ ℝ+)
2824, 25, 27ltmuldivd 13018 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
2923, 28mpbid 232 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < ((𝑁 + 1) / 2))
3018rehalfcld 12405 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℝ)
3130adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 + 1) / 2) ∈ ℝ)
3224, 31posdifd 11741 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < ((𝑁 + 1) / 2) ↔ 0 < (((𝑁 + 1) / 2) − 1)))
3329, 32mpbid 232 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
3433adantlr 715 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
35 elnnz 12515 . . . . . . . . . 10 ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((((𝑁 + 1) / 2) − 1) ∈ ℤ ∧ 0 < (((𝑁 + 1) / 2) − 1)))
3610, 34, 35sylanbrc 583 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℕ)
37 nncn 12170 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
38 xp1d2m1eqxm1d2 12412 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
3937, 38syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4039eleq1d 2813 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4140adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4241adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4336, 42mpbid 232 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
4443a1d 25 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4544expcom 413 . . . . . 6 (2 < 𝑁 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
466, 45jaoi 857 . . . . 5 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
474, 46mpcom 38 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4847impancom 451 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
491, 48sylbi 217 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
5049imp 406 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928
This theorem is referenced by:  nn0o  16329  gausslemma2dlem0b  27301  blennngt2o2  48574  dignn0flhalf  48600
  Copyright terms: Public domain W3C validator