MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nno Structured version   Visualization version   GIF version

Theorem nno 16430
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
nno ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 12987 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
2 nnnn0 12560 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 nn0o1gt2 16429 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
42, 3sylan 579 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
5 eqneqall 2957 . . . . . . 7 (𝑁 = 1 → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
65a1d 25 . . . . . 6 (𝑁 = 1 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
7 nn0z 12664 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
8 peano2zm 12686 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
97, 8syl 17 . . . . . . . . . . 11 (((𝑁 + 1) / 2) ∈ ℕ0 → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
109ad2antlr 726 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
11 2cn 12368 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1211mullidi 11295 . . . . . . . . . . . . . 14 (1 · 2) = 2
13 nnre 12300 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1413ltp1d 12225 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 < (𝑁 + 1))
16 2re 12367 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
17 peano2nn 12305 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1817nnred 12308 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
19 lttr 11366 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2016, 13, 18, 19mp3an2i 1466 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2120expdimp 452 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 < (𝑁 + 1) → 2 < (𝑁 + 1)))
2215, 21mpd 15 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < (𝑁 + 1))
2312, 22eqbrtrid 5201 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 · 2) < (𝑁 + 1))
24 1red 11291 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
2518adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 + 1) ∈ ℝ)
26 2rp 13062 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
2726a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 ∈ ℝ+)
2824, 25, 27ltmuldivd 13146 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
2923, 28mpbid 232 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < ((𝑁 + 1) / 2))
3018rehalfcld 12540 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℝ)
3130adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 + 1) / 2) ∈ ℝ)
3224, 31posdifd 11877 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < ((𝑁 + 1) / 2) ↔ 0 < (((𝑁 + 1) / 2) − 1)))
3329, 32mpbid 232 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
3433adantlr 714 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
35 elnnz 12649 . . . . . . . . . 10 ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((((𝑁 + 1) / 2) − 1) ∈ ℤ ∧ 0 < (((𝑁 + 1) / 2) − 1)))
3610, 34, 35sylanbrc 582 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℕ)
37 nncn 12301 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
38 xp1d2m1eqxm1d2 12547 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
3937, 38syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4039eleq1d 2829 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4140adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4241adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4336, 42mpbid 232 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
4443a1d 25 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4544expcom 413 . . . . . 6 (2 < 𝑁 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
466, 45jaoi 856 . . . . 5 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
474, 46mpcom 38 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4847impancom 451 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
491, 48sylbi 217 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
5049imp 406 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058
This theorem is referenced by:  nn0o  16431  gausslemma2dlem0b  27419  blennngt2o2  48326  dignn0flhalf  48352
  Copyright terms: Public domain W3C validator