MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zob Structured version   Visualization version   GIF version

Theorem zob 15419
Description: Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
zob (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))

Proof of Theorem zob
StepHypRef Expression
1 peano2zm 11710 . . 3 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
2 peano2z 11708 . . . 4 ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((((𝑁 + 1) / 2) − 1) + 1) ∈ ℤ)
3 peano2z 11708 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
43zcnd 11773 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
54halfcld 11565 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℂ)
6 npcan1 10747 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℂ → ((((𝑁 + 1) / 2) − 1) + 1) = ((𝑁 + 1) / 2))
75, 6syl 17 . . . . . 6 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) + 1) = ((𝑁 + 1) / 2))
87eqcomd 2805 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) = ((((𝑁 + 1) / 2) − 1) + 1))
98eleq1d 2863 . . . 4 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((((𝑁 + 1) / 2) − 1) + 1) ∈ ℤ))
102, 9syl5ibr 238 . . 3 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
111, 10impbid2 218 . 2 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ (((𝑁 + 1) / 2) − 1) ∈ ℤ))
12 zcn 11671 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 xp1d2m1eqxm1d2 11574 . . . 4 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1412, 13syl 17 . . 3 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1514eleq1d 2863 . 2 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
1611, 15bitrd 271 1 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  (class class class)co 6878  cc 10222  1c1 10225   + caddc 10227  cmin 10556   / cdiv 10976  2c2 11368  cz 11666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667
This theorem is referenced by:  oddm1d2  15420  oddm1div2z  42329  isodd2  42330  zofldiv2  43124  dignn0flhalflem2  43209  nn0sumshdiglemB  43213
  Copyright terms: Public domain W3C validator