Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 26-Apr-2024 at 6:14 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
13-Apr-2024prodmodclem2 11346 Lemma for prodmodc 11347. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  (
 ( A  C_  ( ZZ>=
 `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) 
 /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
11-Apr-2024prodmodclem2a 11345 Lemma for prodmodc 11347. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  (  seq 1
 (  x.  ,  G ) `  N ) )
 
11-Apr-2024prodmodclem3 11344 Lemma for prodmodc 11347. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
10-Apr-2024jcnd 641 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  -.  ( ps  ->  ch ) )
 
4-Apr-2024prodrbdclem 11340 Lemma for prodrbdc 11343. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
24-Mar-2024prodfdivap 11316 The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `
  N )  /  (  seq M (  x. 
 ,  G ) `  N ) ) )
 
24-Mar-2024prodfrecap 11315 The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  =  ( 1 
 /  ( F `  k ) ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   =>    |-  ( ph  ->  (  seq M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq M (  x.  ,  F ) `
  N ) ) )
 
23-Mar-2024prodfap0 11314 The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `  N ) #  0 )
 
22-Mar-2024prod3fmul 11310 The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  x.  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq M (  x.  ,  G ) `
  N ) ) )
 
21-Mar-2024df-proddc 11320 Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sumdc 11123 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
 |- 
 prod_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( ( A 
 C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m ) ) ) )
 
19-Mar-2024cos02pilt1 12932 Cosine is less than one between zero and  2  x.  pi. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  (
 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
19-Mar-2024cosq34lt1 12931 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
14-Mar-2024coseq0q4123 12915 Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
14-Mar-2024cosq23lt0 12914 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( cos `  A )  <  0 )
 
9-Mar-2024pilem3 12864 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
9-Mar-2024exmidonfin 7050 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6766 and nnon 4523. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  ( om  =  ( On  i^i  Fin )  -> EXMID )
 
9-Mar-2024exmidonfinlem 7049 Lemma for exmidonfin 7050. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
 
8-Mar-2024sin0pilem2 12863 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
8-Mar-2024sin0pilem1 12862 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
7-Mar-2024cosz12 12861 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
6-Mar-2024cos12dec 11474 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
 |-  ( ( A  e.  ( 1 [,] 2
 )  /\  B  e.  ( 1 [,] 2
 )  /\  A  <  B )  ->  ( cos `  B )  <  ( cos `  A ) )
 
25-Feb-2024mul2lt0pn 9551 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  0
 )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( B  x.  A )  < 
 0 )
 
25-Feb-2024mul2lt0np 9550 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  0
 )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( A  x.  B )  < 
 0 )
 
25-Feb-2024lt0ap0 8410 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ( A  e.  RR  /\  A  <  0
 )  ->  A #  0
 )
 
25-Feb-2024negap0d 8393 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  -u A #  0 )
 
24-Feb-2024lt0ap0d 8411 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A #  0 )
 
20-Feb-2024ivthdec 12791 The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `  A ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  y )  <  ( F `  x ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
20-Feb-2024ivthinclemex 12789 Lemma for ivthinc 12790. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
 
19-Feb-2024ivthinclemuopn 12785 Lemma for ivthinc 12790. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   &    |-  ( ph  ->  S  e.  R )   =>    |-  ( ph  ->  E. q  e.  R  q  <  S )
 
19-Feb-2024dedekindicc 12780 A Dedekind cut identifies a unique real number. Similar to df-inp 7274 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A (,) B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
 
18-Feb-2024ivthinclemloc 12788 Lemma for ivthinc 12790. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  (
 q  e.  L  \/  r  e.  R )
 ) )
 
18-Feb-2024ivthinclemdisj 12787 Lemma for ivthinc 12790. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  ( L  i^i  R )  =  (/) )
 
18-Feb-2024ivthinclemur 12786 Lemma for ivthinc 12790. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
 
18-Feb-2024ivthinclemlr 12784 Lemma for ivthinc 12790. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
 
18-Feb-2024ivthinclemum 12782 Lemma for ivthinc 12790. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
 
18-Feb-2024ivthinclemlm 12781 Lemma for ivthinc 12790. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
 
15-Feb-2024dedekindicclemeu 12778 Lemma for dedekindicc 12780. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  C  e.  ( A [,] B ) )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )   &    |-  ( ph  ->  D  e.  ( A [,] B ) )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r
 ) )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  -> F.  )
 
15-Feb-2024dedekindicclemlu 12777 Lemma for dedekindicc 12780. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
15-Feb-2024dedekindicclemlub 12776 Lemma for dedekindicc 12780. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e.  ( A [,] B ) ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
15-Feb-2024dedekindicclemloc 12775 Lemma for dedekindicc 12780. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
15-Feb-2024dedekindicclemub 12774 Lemma for dedekindicc 12780. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
 
15-Feb-2024dedekindicclemuub 12773 Lemma for dedekindicc 12780. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  C )
 
14-Feb-2024suplociccex 12772 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7837 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  ( B [,] C ) ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
14-Feb-2024suplociccreex 12771 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7837 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
6-Feb-2024ivthinclemlopn 12783 Lemma for ivthinc 12790. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   &    |-  ( ph  ->  Q  e.  L )   =>    |-  ( ph  ->  E. r  e.  L  Q  <  r
 )
 
5-Feb-2024ivthinc 12790 The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
2-Feb-2024dedekindeulemuub 12764 Lemma for dedekindeu 12770. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  A )
 
31-Jan-2024dedekindeulemeu 12769 Lemma for dedekindeu 12770. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  -> F.  )
 
31-Jan-2024dedekindeulemlu 12768 Lemma for dedekindeu 12770. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
31-Jan-2024dedekindeulemlub 12767 Lemma for dedekindeu 12770. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
31-Jan-2024dedekindeulemloc 12766 Lemma for dedekindeu 12770. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e. 
 RR  A. y  e.  RR  ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
31-Jan-2024dedekindeulemub 12765 Lemma for dedekindeu 12770. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
 
30-Jan-2024axsuploc 7837 An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7741 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) ) ) 
 ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
24-Jan-2024axpre-suploclemres 7709 Lemma for axpre-suploc 7710. The result. The proof just needs to define  B as basically the same set as  A (but expressed as a subset of  R. rather than a subset of  RR), and apply suplocsr 7617. (Contributed by Jim Kingdon, 24-Jan-2024.)
 |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y 
 <RR  x )   &    |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )   &    |-  B  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
 y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
23-Jan-2024ax-pre-suploc 7741 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

Although this and ax-caucvg 7740 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7740.

(Contributed by Jim Kingdon, 23-Jan-2024.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
23-Jan-2024axpre-suploc 7710 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7741. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
22-Jan-2024suplocsr 7617 An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
21-Jan-2024bj-el2oss1o 12981 Shorter proof of el2oss1o 13188 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  2o  ->  A 
 C_  1o )
 
21-Jan-2024ltm1sr 7585 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
19-Jan-2024suplocsrlempr 7615 Lemma for suplocsr 7617. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w 
 /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
 
18-Jan-2024suplocsrlemb 7614 Lemma for suplocsr 7617. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  A. u  e. 
 P.  A. v  e.  P.  ( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
 
16-Jan-2024suplocsrlem 7616 Lemma for suplocsr 7617. The set  A has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
14-Jan-2024suplocexprlemlub 7532 Lemma for suplocexpr 7533. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
 
14-Jan-2024suplocexprlemub 7531 Lemma for suplocexpr 7533. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
 
10-Jan-2024cbvcsbw 3007 Version of cbvcsb 3008 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
 |-  F/_ y C   &    |-  F/_ x D   &    |-  ( x  =  y  ->  C  =  D )   =>    |-  [_ A  /  x ]_ C  =  [_ A  /  y ]_ D
 
10-Jan-2024cbvsbcw 2936 Version of cbvsbc 2937 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
10-Jan-2024cbvreuvw 2660 Version of cbvreuv 2656 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
10-Jan-2024cbvrexvw 2659 Version of cbvrexv 2655 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
10-Jan-2024cbvralvw 2658 Version of cbvralv 2654 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
10-Jan-2024cbvabw 2262 Version of cbvab 2263 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  |  ph
 }  =  { y  |  ps }
 
9-Jan-2024suplocexprlemloc 7529 Lemma for suplocexpr 7533. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
 
9-Jan-2024suplocexprlemdisj 7528 Lemma for suplocexpr 7533. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
 
9-Jan-2024suplocexprlemru 7527 Lemma for suplocexpr 7533. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. r  e. 
 Q.  ( r  e.  ( 2nd `  B ) 
 <-> 
 E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
 
9-Jan-2024suplocexprlemrl 7525 Lemma for suplocexpr 7533. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
 
9-Jan-2024suplocexprlem2b 7522 Lemma for suplocexpr 7533. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
9-Jan-2024suplocexprlemell 7521 Lemma for suplocexpr 7533. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
7-Jan-2024suplocexpr 7533 An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y 
 /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
 
7-Jan-2024suplocexprlemex 7530 Lemma for suplocexpr 7533. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  B  e.  P. )
 
7-Jan-2024suplocexprlemmu 7526 Lemma for suplocexpr 7533. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
 
7-Jan-2024suplocexprlemml 7524 Lemma for suplocexpr 7533. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
7-Jan-2024suplocexprlemss 7523 Lemma for suplocexpr 7533. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
5-Jan-2024dedekindicclemicc 12779 Lemma for dedekindicc 12780. Same as dedekindicc 12780, except that we merely show  x to be an element of  ( A [,] B ). Later we will strengthen that to  ( A (,) B
). (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
 
5-Jan-2024dedekindeu 12770 A Dedekind cut identifies a unique real number. Similar to df-inp 7274 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E! x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
31-Dec-2023dvmptsubcn 12854 Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  (
 ( ph  /\  x  e. 
 CC )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  D  e.  W )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
 
31-Dec-2023dvmptnegcn 12853 Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  -u A ) )  =  ( x  e.  CC  |->  -u B ) )
 
31-Dec-2023dvmptcmulcn 12852 Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( C  x.  A ) ) )  =  ( x  e. 
 CC  |->  ( C  x.  B ) ) )
 
31-Dec-2023brm 3978 If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
30-Dec-2023dvmptccn 12848 Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  A ) )  =  ( x  e. 
 CC  |->  0 ) )
 
30-Dec-2023dvmptidcn 12847 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 )
 
25-Dec-2023ctfoex 7003 A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  A  e.  _V )
 
23-Dec-2023enct 11946 Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |-  ( A  ~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> ( B 1o )
 ) )
 
23-Dec-2023enctlem 11945 Lemma for enct 11946. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |-  ( A  ~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
 
23-Dec-2023omct 7002  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |- 
 E. f  f : om -onto-> ( om 1o )
 
21-Dec-2023dvcoapbr 12840 The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : Y --> X )   &    |-  ( ph  ->  Y  C_  T )   &    |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  T  C_ 
 CC )   &    |-  ( ph  ->  ( G `  C ) ( S  _D  F ) K )   &    |-  ( ph  ->  C ( T  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( T  _D  ( F  o.  G ) ) ( K  x.  L ) )
 
19-Dec-2023apsscn 8409 The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |- 
 { x  e.  A  |  x #  B }  C_ 
 CC
 
19-Dec-2023aprcl 8408 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC )
 )
 
18-Dec-2023limccoap 12816 Composition of two limits. This theorem is only usable in the case where  x #  X implies R(x) #  C so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
 |-  ( ( ph  /\  x  e.  { w  e.  A  |  w #  X }
 )  ->  R  e.  { w  e.  B  |  w #  C } )   &    |-  (
 ( ph  /\  y  e. 
 { w  e.  B  |  w #  C }
 )  ->  S  e.  CC )   &    |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim CC  X ) )   &    |-  ( ph  ->  D  e.  (
 ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
 CC  C ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  D  e.  ( ( x  e. 
 { w  e.  A  |  w #  X }  |->  T ) lim CC  X ) )
 
16-Dec-2023cnreim 10750 Complex apartness in terms of real and imaginary parts. See also apreim 8365 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
14-Dec-2023cnopnap 12763 The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o. 
 -  ) ) )
 
14-Dec-2023cnovex 12365 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K )  e.  _V )

  Copyright terms: Public domain W3C HTML validation [external]