Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 25-Dec-2025 at 7:06 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
19-Dec-2025ccatclab 11048 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  ( A  u.  B ) )
 
18-Dec-2025lswwrd 11038 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  =  ( W `  (
 ( `  W )  -  1 ) ) )
 
14-Dec-20252strstrndx 12892 A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 14-Dec-2025.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
12-Dec-2025funiedgdm2vald 15571 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 12-Dec-2025.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  Fun  ( G  \  { (/) } ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { A ,  B }  C_ 
 dom  G )   =>    |-  ( ph  ->  (iEdg `  G )  =  (.ef `  G ) )
 
11-Dec-2025funvtxdm2vald 15570 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  Fun  ( G  \  { (/) } ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { A ,  B }  C_ 
 dom  G )   =>    |-  ( ph  ->  (Vtx `  G )  =  (
 Base `  G ) )
 
11-Dec-2025funiedgdm2domval 15569 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  2o 
 ~<_  dom  G )  ->  (iEdg `  G )  =  (.ef `  G )
 )
 
11-Dec-2025funvtxdm2domval 15568 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  2o 
 ~<_  dom  G )  ->  (Vtx `  G )  =  ( Base `  G )
 )
 
4-Dec-2025hash2en 10986 Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.)
 |-  ( V  ~~  2o  <->  ( V  e.  Fin  /\  ( `  V )  =  2 ) )
 
30-Nov-2025nninfnfiinf 15893 An element of ℕ which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
 |-  (
 ( A  e.  /\  -.  E. n  e.  om  A  =  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  A  =  ( i  e.  om  |->  1o ) )
 
27-Nov-2025psrelbasfi 14380 Simpler form of psrelbas 14379 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : ( NN0  ^m  I
 ) --> K )
 
26-Nov-2025mplsubgfileminv 14404 Lemma for mplsubgfi 14405. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  N  =  ( invg `  S )   =>    |-  ( ph  ->  ( N `  X )  e.  U )
 
26-Nov-2025mplsubgfilemcl 14403 Lemma for mplsubgfi 14405. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  U )   &    |- 
 .+  =  ( +g  `  S )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  U )
 
25-Nov-2025nninfinfwlpo 7281 The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7234). (Contributed by Jim Kingdon, 25-Nov-2025.)
 |-  ( A. x  e. DECID  x  =  (
 i  e.  om  |->  1o )  <->  om  e. WOmni )
 
23-Nov-2025psrbagfi 14377 A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  Fin  ->  D  =  ( NN0  ^m  I ) )
 
22-Nov-2025df-acnm 7286 Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
 |- AC  A  =  { x  |  ( A  e.  _V  /\ 
 A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y
 )  e.  ( f `
  y ) ) }
 
21-Nov-2025mplsubgfilemm 14402 Lemma for mplsubgfi 14405. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  E. j  j  e.  U )
 
14-Nov-20252omapen 15866 Equinumerosity of  ( 2o  ^m  A ) and the set of decidable subsets of  A. (Contributed by Jim Kingdon, 14-Nov-2025.)
 |-  ( A  e.  V  ->  ( 2o  ^m  A ) 
 ~~  { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x }
 )
 
12-Nov-20252omap 15865 Mapping between  ( 2o  ^m  A ) and decidable subsets of  A. (Contributed by Jim Kingdon, 12-Nov-2025.)
 |-  F  =  ( s  e.  ( 2o  ^m  A )  |->  { z  e.  A  |  ( s `  z
 )  =  1o }
 )   =>    |-  ( A  e.  V  ->  F : ( 2o 
 ^m  A ) -1-1-onto-> { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
 
11-Nov-2025domomsubct 15871 A set dominated by  om is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
 |-  ( A 
 ~<_  om  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A ) )
 
10-Nov-2025prdsbaslemss 13048 Lemma for prdsbas 13050 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  A  =  ( E `
  P )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e.  NN   &    |-  ( ph  ->  T  e.  X )   &    |-  ( ph  ->  { <. ( E `
  ndx ) ,  T >. }  C_  P )   =>    |-  ( ph  ->  A  =  T )
 
5-Nov-2025fnmpl 14397 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
 |- mPoly  Fn  ( _V  X.  _V )
 
4-Nov-2025mplelbascoe 14396 Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( X  e.  U  <->  ( X  e.  B  /\  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  ( X `  b )  =  .0.  ) ) ) )
 
4-Nov-2025mplbascoe 14395 Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  (
 a `  k )  <  ( b `  k
 )  ->  ( f `  b )  =  .0.  ) } )
 
4-Nov-2025mplvalcoe 14394 Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  (
 f `  b )  =  .0.  ) }   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
 
1-Nov-2025ficardon 7295 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
 |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
 
31-Oct-2025bitsdc 12200 Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> DECID  M  e.  (bits `  N ) )
 
28-Oct-2025nn0maxcl 11478 The maximum of two nonnegative integers is a nonnegative integer. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  NN0 )
 
28-Oct-2025qdcle 10387 Rational  <_ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  <_  B )
 
17-Oct-2025plycoeid3 15171 Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
 |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  ( A "
 ( ZZ>= `  ( D  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... D ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )   &    |-  ( ph  ->  X  e.  CC )   =>    |-  ( ph  ->  ( F `  X )  =  sum_ j  e.  (
 0 ... M ) ( ( A `  j
 )  x.  ( X ^ j ) ) )
 
13-Oct-2025tpfidceq 7026 A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  C  e.  D )   &    |-  ( ph  ->  A. x  e.  D  A. y  e.  D DECID  x  =  y )   =>    |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
 
13-Oct-2025prfidceq 7024 A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A. x  e.  C  A. y  e.  C DECID  x  =  y )   =>    |-  ( ph  ->  { A ,  B }  e.  Fin )
 
13-Oct-2025dcun 3569 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  -> DECID  C  e.  A )   &    |-  ( ph  -> DECID  C  e.  B )   =>    |-  ( ph  -> DECID  C  e.  ( A  u.  B ) )
 
9-Oct-2025dvdsfi 12503 A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.)
 |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
 
7-Oct-2025df-mplcoe 14368 Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

 |- mPoly  =  ( i  e.  _V ,  r  e.  _V  |->  [_ ( i mPwSer  r ) 
 /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
 ) ( A. k  e.  i  ( a `  k )  <  (
 b `  k )  ->  ( f `  b
 )  =  ( 0g
 `  r ) ) } ) )
 
6-Oct-2025dvconstss 15112 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( X  X.  { A } ) )  =  ( X  X.  { 0 } ) )
 
6-Oct-2025dcfrompeirce 1468 The decidability of a proposition 
ch follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 915), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> F.  )   &    |-  ( ( (
 ph  ->  ps )  ->  ph )  -> 
 ph )   =>    |- DECID  ch
 
6-Oct-2025dcfromcon 1467 The decidability of a proposition 
ch follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 854), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> T.  )   &    |-  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 )   =>    |- DECID  ch
 
6-Oct-2025dcfromnotnotr 1466 The decidability of a proposition 
ps follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 844), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ps  \/  -. 
 ps ) )   &    |-  ( -.  -.  ph  ->  ph )   =>    |- DECID  ps
 
3-Oct-2025dvidre 15111 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( RR  _D  (  _I  |`  RR ) )  =  ( RR  X.  { 1 } )
 
3-Oct-2025dvconstre 15110 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( A  e.  CC  ->  ( RR  _D  ( RR  X.  { A }
 ) )  =  ( RR  X.  { 0 } ) )
 
3-Oct-2025dvidsslem 15107 Lemma for dvconstss 15112. Analogue of dvidlemap 15105 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ( ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  ->  ( ( ( F `
  z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( S  _D  F )  =  ( X  X.  { B } ) )
 
3-Oct-2025dvidrelem 15106 Lemma for dvidre 15111 and dvconstre 15110. Analogue of dvidlemap 15105 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  (
 ( ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( RR  _D  F )  =  ( RR  X.  { B }
 ) )
 
28-Sep-2025metuex 14259 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
 
28-Sep-2025cndsex 14257 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( abs  o.  -  )  e.  _V
 
25-Sep-2025cntopex 14258 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  e. 
 _V
 
24-Sep-2025mopnset 14256 Getting a set by applying 
MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |-  ( D  e.  V  ->  ( MetOpen `  D )  e.  _V )
 
24-Sep-2025blfn 14255 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |- 
 ball  Fn  _V
 
23-Sep-2025elfzoext 10319 Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( N  +  I
 ) ) )
 
22-Sep-2025plycjlemc 15174 Lemma for plycj 15175. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( z ^
 k ) ) ) )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( ( *  o.  A ) `  k
 )  x.  ( z ^ k ) ) ) )
 
20-Sep-2025plycolemc 15172 Lemma for plyco 15173. The result expressed as a sum, with a degree and coefficients for  F specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( N  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( x ^
 k ) ) ) )   =>    |-  ( ph  ->  (
 z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( ( G `
  z ) ^
 k ) ) )  e.  (Poly `  S ) )
 
18-Sep-2025elfzoextl 10318 Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( I  +  N ) ) )
 
16-Sep-2025lgsquadlemofi 15495 Lemma for lgsquad 15499. There are finitely many members of  S with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  { z  e.  S  |  -.  2  ||  ( 1st `  z ) }  e.  Fin )
 
16-Sep-2025lgsquadlemsfi 15494 Lemma for lgsquad 15499. 
S is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  S  e.  Fin )
 
16-Sep-2025opabfi 7034 Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )   =>    |-  ( ph  ->  S  e.  Fin )
 
13-Sep-2025uchoice 6222 Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7318 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
 f `  x )  /  y ]. ph )
 )
 
11-Sep-2025expghmap 14311 Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
11-Sep-2025cnfldui 14293 The invertible complex numbers are exactly those apart from zero. This is recapb 8743 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
9-Sep-2025gsumfzfsumlemm 14291 Lemma for gsumfzfsum 14292. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzfsumlem0 14290 Lemma for gsumfzfsum 14292. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzmhm2 13622 Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  X  e.  B )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) )  =  E )
 
8-Sep-2025gsumfzmhm 13621 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ( G MndHom  H )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
8-Sep-20255ndvds6 12188 5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  6
 
8-Sep-20255ndvds3 12187 5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  3
 
6-Sep-2025gsumfzconst 13619 Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
31-Aug-2025gsumfzmptfidmadd 13617 The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
30-Aug-2025gsumfzsubmcl 13616 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  S  e.  (SubMnd `  G )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> S )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
30-Aug-2025seqm1g 10617 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
29-Aug-2025seqf1og 10664 Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( G `  x )  e.  C )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
25-Aug-2025irrmulap 9768 The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9767. (Contributed by Jim Kingdon, 25-Aug-2025.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A. q  e.  QQ  A #  q )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  B  =/=  0
 )   &    |-  ( ph  ->  Q  e.  QQ )   =>    |-  ( ph  ->  ( A  x.  B ) #  Q )
 
19-Aug-2025seqp1g 10609 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  F  e.  V  /\  .+  e.  W )  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
19-Aug-2025seq1g 10606 Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V  /\  .+  e.  W ) 
 ->  (  seq M ( 
 .+  ,  F ) `  M )  =  ( F `  M ) )
 
18-Aug-2025iswrdiz 10999 A zero-based sequence is a word. In iswrdinn0 10997 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  W  e. Word  S )
 
16-Aug-2025gsumfzcl 13273 Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  B )
 
16-Aug-2025iswrdinn0 10997 A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  NN0 )  ->  W  e. Word  S )
 
15-Aug-2025gsumfzz 13269 Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  ) )  =  .0.  )
 
14-Aug-2025gsumfzval 13165 An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `
  N ) ) )
 
13-Aug-2025znidom 14361 The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  Prime  ->  Y  e. IDomn )
 
12-Aug-2025rrgmex 13965 A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
 |-  E  =  (RLReg `  R )   =>    |-  ( A  e.  E  ->  R  e.  _V )
 
10-Aug-2025gausslemma2dlem1cl 15478 Lemma for gausslemma2dlem1 15480. Closure of the body of the definition of  R. (Contributed by Jim Kingdon, 10-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  ( ph  ->  A  e.  ( 1 ...
 H ) )   =>    |-  ( ph  ->  if ( ( A  x.  2 )  <  ( P 
 /  2 ) ,  ( A  x.  2
 ) ,  ( P  -  ( A  x.  2 ) ) )  e.  ZZ )
 
9-Aug-2025gausslemma2dlem1f1o 15479 Lemma for gausslemma2dlem1 15480. (Contributed by Jim Kingdon, 9-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   =>    |-  ( ph  ->  R : ( 1 ...
 H ) -1-1-onto-> ( 1 ... H ) )
 
7-Aug-2025qdclt 10386 Rational  < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  <  B )
 
22-Jul-2025ivthdich 15067 The intermediate value theorem implies real number dichotomy. Because real number dichotomy (also known as analytic LLPO) is a constructive taboo, this means we will be unable to prove the intermediate value theorem as stated here (although versions with additional conditions, such as ivthinc 15057 for strictly monotonic functions, can be proved).

The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number  z. We want to show that  z  <_  0  \/  0  <_  z. Because of hovercncf 15060, hovera 15061, and hoverb 15062, we are able to apply the intermediate value theorem to get a value  c such that the hover function at  c equals  z. By axltwlin 8139,  c  <  1 or  0  <  c, and that leads to  z  <_  0 by hoverlt1 15063 or 
0  <_  z by hovergt0 15064. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)

 |-  ( A. f ( f  e.  ( RR
 -cn-> RR )  ->  A. a  e.  RR  A. b  e. 
 RR  ( ( a  <  b  /\  (
 f `  a )  <  0  /\  0  < 
 ( f `  b
 ) )  ->  E. x  e.  RR  ( a  < 
 x  /\  x  <  b 
 /\  ( f `  x )  =  0
 ) ) )  ->  A. r  e.  RR  A. s  e.  RR  (
 r  <_  s  \/  s  <_  r ) )
 
22-Jul-2025dich0 15066 Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  ( A. z  e. 
 RR  ( z  <_ 
 0  \/  0  <_  z )  <->  A. x  e.  RR  A. y  e.  RR  ( x  <_  y  \/  y  <_  x ) )
 
22-Jul-2025ivthdichlem 15065 Lemma for ivthdich 15067. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   &    |-  ( ph  ->  Z  e.  RR )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
 
22-Jul-2025hovergt0 15064 The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  0  <  C )  ->  0  <_  ( F `  C ) )
 
22-Jul-2025hoverlt1 15063 The hover function evaluated at a point less than one. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  C  <  1
 )  ->  ( F `  C )  <_  0
 )
 
21-Jul-2025hoverb 15062 A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  Z  <  ( F `
  ( Z  +  2 ) ) )
 
21-Jul-2025hovera 15061 A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  ( F `  ( Z  -  1 ) )  <  Z )
 
21-Jul-2025rexeqtrrdv 2712 Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
21-Jul-2025raleqtrrdv 2711 Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
21-Jul-2025rexeqtrdv 2710 Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
21-Jul-2025raleqtrdv 2709 Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
20-Jul-2025hovercncf 15060 The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  F  e.  ( RR
 -cn-> RR )
 
19-Jul-2025mincncf 15030 The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X
 -cn-> RR ) )
 
18-Jul-2025maxcncf 15029 The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
 
14-Jul-2025xnn0nnen 10580 The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
 |- NN0*  ~~  NN
 
12-Jul-2025nninfninc 7224 All values beyond a zero in an ℕ sequence are zero. This is another way of stating that elements of ℕ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
 |-  ( ph  ->  A  e. )   &    |-  ( ph  ->  X  e.  om )   &    |-  ( ph  ->  Y  e.  om )   &    |-  ( ph  ->  X  C_  Y )   &    |-  ( ph  ->  ( A `  X )  =  (/) )   =>    |-  ( ph  ->  ( A `  Y )  =  (/) )
 
10-Jul-2025nninfctlemfo 12303 Lemma for nninfct 12304. (Contributed by Jim Kingdon, 10-Jul-2025.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( om  e. Omni  ->  I :NN0* -onto-> )
 
8-Jul-2025nnnninfen 15891 Equinumerosity of the natural numbers and ℕ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |-  ( om  ~~  <->  om  e. Omni )
 
8-Jul-2025nninfct 12304 The limited principle of omniscience (LPO) implies that ℕ is countable. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |-  ( om  e. Omni  ->  E. f  f : om -onto->
 ( 1o ) )

  Copyright terms: Public domain W3C HTML validation [external]