Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 7-Feb-2026 at 7:09 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
31-Jan-2026fvmbr 5661 If a function value is inhabited, the argument is related to the function value. (Contributed by Jim Kingdon, 31-Jan-2026.)
 |-  ( A  e.  ( F `  X )  ->  X F ( F `  X ) )
 
30-Jan-2026elfvex 5660 If a function value is inhabited, the function value is a set. (Contributed by Jim Kingdon, 30-Jan-2026.)
 |-  ( A  e.  ( F `  B )  ->  ( F `  B )  e.  _V )
 
30-Jan-2026reldmm 4941 A relation is inhabited iff its domain is inhabited. (Contributed by Jim Kingdon, 30-Jan-2026.)
 |-  ( Rel  A  ->  ( E. x  x  e.  A  <->  E. y  y  e. 
 dom  A ) )
 
25-Jan-2026ifp2 986 Forward direction of dfifp2dc 987. This direction does not require decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
 |-  (if- ( ph ,  ps ,  ch )  ->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )
 
25-Jan-2026ifpdc 985 The conditional operator for propositions implies decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
 |-  (if- ( ph ,  ps ,  ch )  -> DECID  ph )
 
20-Jan-2026cats1fvd 11293 A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  ( `  S )  =  M )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( ph  ->  ( S `  N )  =  Y )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( T `  N )  =  Y )
 
20-Jan-2026cats1fvnd 11292 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( `  S )  =  M )   =>    |-  ( ph  ->  ( T `  M )  =  X )
 
19-Jan-2026cats2catd 11296 Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  ( ph  ->  B  e. Word  _V )   &    |-  ( ph  ->  D  e. Word  _V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  W )   &    |-  ( ph  ->  A  =  ( B ++  <" X "> ) )   &    |-  ( ph  ->  C  =  (
 <" Y "> ++  D ) )   =>    |-  ( ph  ->  ( A ++  C )  =  ( ( B ++  <" X Y "> ) ++  D ) )
 
19-Jan-2026cats1catd 11295 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  A  e. Word  _V )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( ph  ->  C  =  ( B ++  <" X "> ) )   &    |-  ( ph  ->  B  =  ( A ++  S ) )   =>    |-  ( ph  ->  C  =  ( A ++  T ) )
 
19-Jan-2026cats1lend 11294 The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( `  S )  =  M   &    |-  ( M  +  1 )  =  N   =>    |-  ( ph  ->  ( `  T )  =  N )
 
18-Jan-2026rexanaliim 2636 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Revised by Jim Kingdon, 18-Jan-2026.)
 |-  ( E. x  e.  A  ( ph  /\  -.  ps )  ->  -.  A. x  e.  A  ( ph  ->  ps ) )
 
15-Jan-2026df-uspgren 15947 Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph or a special undirected simple hypergraph, consisting of a set  v (of "vertices") and an injective (one-to-one) function  e (representing (indexed) "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by Jim Kingdon, 15-Jan-2026.)
 |- USPGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
 
11-Jan-2026en2prde 7362 A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.)
 |-  ( V  ~~  2o  ->  E. a E. b
 ( a  =/=  b  /\  V  =  { a ,  b } ) )
 
10-Jan-2026pw1mapen 16321 Equinumerosity of  ( ~P 1o  ^m  A ) and the set of subsets of  A. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( A  e.  V  ->  ( ~P 1o  ^m  A )  ~~  ~P A )
 
10-Jan-2026pw1if 7406 Expressing a truth value in terms of an  if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( A  e.  ~P 1o  ->  if ( A  =  1o ,  1o ,  (/) )  =  A )
 
10-Jan-2026pw1m 7405 A truth value which is inhabited is equal to true. This is a variation of pwntru 4282 and pwtrufal 16322. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( ( A  e.  ~P 1o  /\  E. x  x  e.  A )  ->  A  =  1o )
 
10-Jan-20261ndom2 7022 Two is not dominated by one. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |- 
 -.  2o  ~<_  1o
 
9-Jan-2026pw1map 16320 Mapping between  ( ~P 1o  ^m  A ) and subsets of  A. (Contributed by Jim Kingdon, 9-Jan-2026.)
 |-  F  =  ( s  e.  ( ~P 1o  ^m  A ) 
 |->  { z  e.  A  |  ( s `  z
 )  =  1o }
 )   =>    |-  ( A  e.  V  ->  F : ( ~P 1o  ^m  A ) -1-1-onto-> ~P A )
 
9-Jan-2026iftrueb01 7404 Using an  if expression to represent a truth value by  (/) or  1o. Unlike some theorems using  if,  ph does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
 |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )
 
8-Jan-2026pfxclz 11206 Closure of the prefix extractor. This extends pfxclg 11205 from  NN0 to  ZZ (negative lengths are trivial, resulting in the empty word). (Contributed by Jim Kingdon, 8-Jan-2026.)
 |-  ( ( S  e. Word  A 
 /\  L  e.  ZZ )  ->  ( S prefix  L )  e. Word  A )
 
8-Jan-2026fnpfx 11204 The domain of the prefix extractor. (Contributed by Jim Kingdon, 8-Jan-2026.)
 |- prefix  Fn  ( _V  X.  NN0 )
 
7-Jan-2026pr1or2 7363 An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\ DECID  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
 
6-Jan-2026upgr1elem1 15914 Lemma for upgr1edc 15915. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.)
 |-  ( ph  ->  { B ,  C }  e.  S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  -> DECID  B  =  C )   =>    |-  ( ph  ->  { { B ,  C } }  C_  { x  e.  S  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
3-Jan-2026dom1o 16314 Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  e.  V  ->  ( 1o  ~<_  A  <->  E. j  j  e.  A ) )
 
3-Jan-2026df-umgren 15888 Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
 |- UMGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }
 
3-Jan-2026df-upgren 15887 Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15888). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
 |- UPGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~ 
 1o  \/  x  ~~  2o ) } }
 
3-Jan-2026en2m 6972 A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  ~~  2o  ->  E. x  x  e.  A )
 
3-Jan-2026en1m 6955 A set with one element is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  ~~  1o  ->  E. x  x  e.  A )
 
31-Dec-2025pw0ss 15877 There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
 |- 
 { s  e.  ~P (/) 
 |  E. j  j  e.  s }  =  (/)
 
31-Dec-2025df-ushgrm 15864 Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function  e is an injective (one-to-one) function into subsets of the set of vertices  v, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.)
 |- USHGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s } }
 
29-Dec-2025df-uhgrm 15863 Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.)
 |- UHGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { s  e.  ~P v  |  E. j  j  e.  s } }
 
29-Dec-2025iedgex 15814 Applying the indexed edge function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
 |-  ( G  e.  V  ->  (iEdg `  G )  e.  _V )
 
29-Dec-2025vtxex 15813 Applying the vertex function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
 |-  ( G  e.  V  ->  (Vtx `  G )  e.  _V )
 
29-Dec-2025snmb 3787 A singleton is inhabited iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.)
 |-  ( A  e.  _V  <->  E. x  x  e.  { A } )
 
27-Dec-2025lswex 11118 Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11115 or lswcl 11117 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  e.  _V )
 
23-Dec-2025fzowrddc 11174 Decidability of whether a range of integers is a subset of a word's domain. (Contributed by Jim Kingdon, 23-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  F  e.  ZZ  /\  L  e.  ZZ )  -> DECID  ( F..^ L )  C_  dom 
 S )
 
19-Dec-2025ccatclab 11124 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  ( A  u.  B ) )
 
18-Dec-2025lswwrd 11113 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  =  ( W `  (
 ( `  W )  -  1 ) ) )
 
14-Dec-20252strstrndx 13146 A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 14-Dec-2025.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
12-Dec-2025funiedgdm2vald 15827 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 12-Dec-2025.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  Fun  ( G  \  { (/) } ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { A ,  B }  C_ 
 dom  G )   =>    |-  ( ph  ->  (iEdg `  G )  =  (.ef `  G ) )
 
11-Dec-2025funvtxdm2vald 15826 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  Fun  ( G  \  { (/) } ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { A ,  B }  C_ 
 dom  G )   =>    |-  ( ph  ->  (Vtx `  G )  =  (
 Base `  G ) )
 
11-Dec-2025funiedgdm2domval 15825 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  2o 
 ~<_  dom  G )  ->  (iEdg `  G )  =  (.ef `  G )
 )
 
11-Dec-2025funvtxdm2domval 15824 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  2o 
 ~<_  dom  G )  ->  (Vtx `  G )  =  ( Base `  G )
 )
 
4-Dec-2025hash2en 11060 Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.)
 |-  ( V  ~~  2o  <->  ( V  e.  Fin  /\  ( `  V )  =  2 ) )
 
30-Nov-2025nninfnfiinf 16348 An element of ℕ which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
 |-  (
 ( A  e.  /\  -.  E. n  e.  om  A  =  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  A  =  ( i  e.  om  |->  1o ) )
 
27-Nov-2025psrelbasfi 14634 Simpler form of psrelbas 14633 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : ( NN0  ^m  I
 ) --> K )
 
26-Nov-2025mplsubgfileminv 14658 Lemma for mplsubgfi 14659. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  N  =  ( invg `  S )   =>    |-  ( ph  ->  ( N `  X )  e.  U )
 
26-Nov-2025mplsubgfilemcl 14657 Lemma for mplsubgfi 14659. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  U )   &    |- 
 .+  =  ( +g  `  S )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  U )
 
25-Nov-2025nninfinfwlpo 7343 The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7296). (Contributed by Jim Kingdon, 25-Nov-2025.)
 |-  ( A. x  e. DECID  x  =  (
 i  e.  om  |->  1o )  <->  om  e. WOmni )
 
23-Nov-2025psrbagfi 14631 A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  Fin  ->  D  =  ( NN0  ^m  I ) )
 
22-Nov-2025df-acnm 7348 Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
 |- AC  A  =  { x  |  ( A  e.  _V  /\ 
 A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y
 )  e.  ( f `
  y ) ) }
 
21-Nov-2025mplsubgfilemm 14656 Lemma for mplsubgfi 14659. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  E. j  j  e.  U )
 
14-Nov-20252omapen 16319 Equinumerosity of  ( 2o  ^m  A ) and the set of decidable subsets of  A. (Contributed by Jim Kingdon, 14-Nov-2025.)
 |-  ( A  e.  V  ->  ( 2o  ^m  A ) 
 ~~  { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x }
 )
 
12-Nov-20252omap 16318 Mapping between  ( 2o  ^m  A ) and decidable subsets of  A. (Contributed by Jim Kingdon, 12-Nov-2025.)
 |-  F  =  ( s  e.  ( 2o  ^m  A )  |->  { z  e.  A  |  ( s `  z
 )  =  1o }
 )   =>    |-  ( A  e.  V  ->  F : ( 2o 
 ^m  A ) -1-1-onto-> { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
 
11-Nov-2025domomsubct 16326 A set dominated by  om is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
 |-  ( A 
 ~<_  om  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A ) )
 
10-Nov-2025prdsbaslemss 13302 Lemma for prdsbas 13304 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  A  =  ( E `
  P )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e.  NN   &    |-  ( ph  ->  T  e.  X )   &    |-  ( ph  ->  { <. ( E `
  ndx ) ,  T >. }  C_  P )   =>    |-  ( ph  ->  A  =  T )
 
5-Nov-2025fnmpl 14651 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
 |- mPoly  Fn  ( _V  X.  _V )
 
4-Nov-2025mplelbascoe 14650 Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( X  e.  U  <->  ( X  e.  B  /\  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  ( X `  b )  =  .0.  ) ) ) )
 
4-Nov-2025mplbascoe 14649 Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  (
 a `  k )  <  ( b `  k
 )  ->  ( f `  b )  =  .0.  ) } )
 
4-Nov-2025mplvalcoe 14648 Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  (
 f `  b )  =  .0.  ) }   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
 
1-Nov-2025ficardon 7357 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
 |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
 
31-Oct-2025bitsdc 12453 Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> DECID  M  e.  (bits `  N ) )
 
28-Oct-2025nn0maxcl 11731 The maximum of two nonnegative integers is a nonnegative integer. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  NN0 )
 
28-Oct-2025qdcle 10461 Rational  <_ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  <_  B )
 
17-Oct-2025plycoeid3 15425 Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
 |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  ( A "
 ( ZZ>= `  ( D  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... D ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )   &    |-  ( ph  ->  X  e.  CC )   =>    |-  ( ph  ->  ( F `  X )  =  sum_ j  e.  (
 0 ... M ) ( ( A `  j
 )  x.  ( X ^ j ) ) )
 
13-Oct-2025tpfidceq 7088 A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  C  e.  D )   &    |-  ( ph  ->  A. x  e.  D  A. y  e.  D DECID  x  =  y )   =>    |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
 
13-Oct-2025prfidceq 7086 A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A. x  e.  C  A. y  e.  C DECID  x  =  y )   =>    |-  ( ph  ->  { A ,  B }  e.  Fin )
 
13-Oct-2025dcun 3601 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  -> DECID  C  e.  A )   &    |-  ( ph  -> DECID  C  e.  B )   =>    |-  ( ph  -> DECID  C  e.  ( A  u.  B ) )
 
9-Oct-2025dvdsfi 12756 A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.)
 |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
 
7-Oct-2025df-mplcoe 14622 Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

 |- mPoly  =  ( i  e.  _V ,  r  e.  _V  |->  [_ ( i mPwSer  r ) 
 /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
 ) ( A. k  e.  i  ( a `  k )  <  (
 b `  k )  ->  ( f `  b
 )  =  ( 0g
 `  r ) ) } ) )
 
6-Oct-2025dvconstss 15366 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( X  X.  { A } ) )  =  ( X  X.  { 0 } ) )
 
6-Oct-2025dcfrompeirce 1492 The decidability of a proposition 
ch follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 919), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> F.  )   &    |-  ( ( (
 ph  ->  ps )  ->  ph )  -> 
 ph )   =>    |- DECID  ch
 
6-Oct-2025dcfromcon 1491 The decidability of a proposition 
ch follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 858), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> T.  )   &    |-  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 )   =>    |- DECID  ch
 
6-Oct-2025dcfromnotnotr 1490 The decidability of a proposition 
ps follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 848), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ps  \/  -. 
 ps ) )   &    |-  ( -.  -.  ph  ->  ph )   =>    |- DECID  ps
 
3-Oct-2025dvidre 15365 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( RR  _D  (  _I  |`  RR ) )  =  ( RR  X.  { 1 } )
 
3-Oct-2025dvconstre 15364 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( A  e.  CC  ->  ( RR  _D  ( RR  X.  { A }
 ) )  =  ( RR  X.  { 0 } ) )
 
3-Oct-2025dvidsslem 15361 Lemma for dvconstss 15366. Analogue of dvidlemap 15359 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ( ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  ->  ( ( ( F `
  z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( S  _D  F )  =  ( X  X.  { B } ) )
 
3-Oct-2025dvidrelem 15360 Lemma for dvidre 15365 and dvconstre 15364. Analogue of dvidlemap 15359 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  (
 ( ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( RR  _D  F )  =  ( RR  X.  { B }
 ) )
 
28-Sep-2025metuex 14513 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
 
28-Sep-2025cndsex 14511 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( abs  o.  -  )  e.  _V
 
25-Sep-2025cntopex 14512 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  e. 
 _V
 
24-Sep-2025mopnset 14510 Getting a set by applying 
MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |-  ( D  e.  V  ->  ( MetOpen `  D )  e.  _V )
 
24-Sep-2025blfn 14509 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |- 
 ball  Fn  _V
 
23-Sep-2025elfzoext 10393 Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( N  +  I
 ) ) )
 
22-Sep-2025plycjlemc 15428 Lemma for plycj 15429. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( z ^
 k ) ) ) )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( ( *  o.  A ) `  k
 )  x.  ( z ^ k ) ) ) )
 
20-Sep-2025plycolemc 15426 Lemma for plyco 15427. The result expressed as a sum, with a degree and coefficients for  F specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( N  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( x ^
 k ) ) ) )   =>    |-  ( ph  ->  (
 z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( ( G `
  z ) ^
 k ) ) )  e.  (Poly `  S ) )
 
18-Sep-2025elfzoextl 10392 Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( I  +  N ) ) )
 
16-Sep-2025lgsquadlemofi 15749 Lemma for lgsquad 15753. There are finitely many members of  S with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  { z  e.  S  |  -.  2  ||  ( 1st `  z ) }  e.  Fin )
 
16-Sep-2025lgsquadlemsfi 15748 Lemma for lgsquad 15753. 
S is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  S  e.  Fin )
 
16-Sep-2025opabfi 7096 Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )   =>    |-  ( ph  ->  S  e.  Fin )
 
13-Sep-2025uchoice 6281 Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7385 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
 f `  x )  /  y ]. ph )
 )
 
11-Sep-2025expghmap 14565 Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
11-Sep-2025cnfldui 14547 The invertible complex numbers are exactly those apart from zero. This is recapb 8814 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
9-Sep-2025gsumfzfsumlemm 14545 Lemma for gsumfzfsum 14546. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzfsumlem0 14544 Lemma for gsumfzfsum 14546. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzmhm2 13876 Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  X  e.  B )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) )  =  E )
 
8-Sep-2025gsumfzmhm 13875 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ( G MndHom  H )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
8-Sep-20255ndvds6 12441 5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  6
 
8-Sep-20255ndvds3 12440 5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  3
 
6-Sep-2025gsumfzconst 13873 Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )

  Copyright terms: Public domain W3C HTML validation [external]