Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 29-Jan-2026 at 7:16 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
20-Jan-2026cats1fvd 11264 A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑 → (♯‘𝑆) = 𝑀)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑊)    &   (𝜑 → (𝑆𝑁) = 𝑌)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝑇𝑁) = 𝑌)
 
20-Jan-2026cats1fvnd 11263 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑉)    &   (𝜑 → (♯‘𝑆) = 𝑀)       (𝜑 → (𝑇𝑀) = 𝑋)
 
19-Jan-2026cats2catd 11267 Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.)
(𝜑𝐵 ∈ Word V)    &   (𝜑𝐷 ∈ Word V)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑊)    &   (𝜑𝐴 = (𝐵 ++ ⟨“𝑋”⟩))    &   (𝜑𝐶 = (⟨“𝑌”⟩ ++ 𝐷))       (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷))
 
19-Jan-2026cats1catd 11266 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝐴 ∈ Word V)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑊)    &   (𝜑𝐶 = (𝐵 ++ ⟨“𝑋”⟩))    &   (𝜑𝐵 = (𝐴 ++ 𝑆))       (𝜑𝐶 = (𝐴 ++ 𝑇))
 
19-Jan-2026cats1lend 11265 The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑊)    &   (♯‘𝑆) = 𝑀    &   (𝑀 + 1) = 𝑁       (𝜑 → (♯‘𝑇) = 𝑁)
 
18-Jan-2026rexanaliim 2616 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Revised by Jim Kingdon, 18-Jan-2026.)
(∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥𝐴 (𝜑𝜓))
 
15-Jan-2026df-uspgren 15918 Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph or a special undirected simple hypergraph, consisting of a set 𝑣 (of "vertices") and an injective (one-to-one) function 𝑒 (representing (indexed) "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by Jim Kingdon, 15-Jan-2026.)
USPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
 
11-Jan-2026en2prde 7334 A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.)
(𝑉 ≈ 2o → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
 
10-Jan-2026pw1mapen 16273 Equinumerosity of (𝒫 1o𝑚 𝐴) and the set of subsets of 𝐴. (Contributed by Jim Kingdon, 10-Jan-2026.)
(𝐴𝑉 → (𝒫 1o𝑚 𝐴) ≈ 𝒫 𝐴)
 
10-Jan-2026pw1if 7378 Expressing a truth value in terms of an if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
(𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴)
 
10-Jan-2026pw1m 7377 A truth value which is inhabited is equal to true. This is a variation of pwntru 4262 and pwtrufal 16274. (Contributed by Jim Kingdon, 10-Jan-2026.)
((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥𝐴) → 𝐴 = 1o)
 
10-Jan-20261ndom2 6994 Two is not dominated by one. (Contributed by Jim Kingdon, 10-Jan-2026.)
¬ 2o ≼ 1o
 
9-Jan-2026pw1map 16272 Mapping between (𝒫 1o𝑚 𝐴) and subsets of 𝐴. (Contributed by Jim Kingdon, 9-Jan-2026.)
𝐹 = (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})       (𝐴𝑉𝐹:(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴)
 
9-Jan-2026iftrueb01 7376 Using an if expression to represent a truth value by or 1o. Unlike some theorems using if, 𝜑 does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
(if(𝜑, 1o, ∅) = 1o𝜑)
 
8-Jan-2026pfxclz 11177 Closure of the prefix extractor. This extends pfxclg 11176 from 0 to (negative lengths are trivial, resulting in the empty word). (Contributed by Jim Kingdon, 8-Jan-2026.)
((𝑆 ∈ Word 𝐴𝐿 ∈ ℤ) → (𝑆 prefix 𝐿) ∈ Word 𝐴)
 
8-Jan-2026fnpfx 11175 The domain of the prefix extractor. (Contributed by Jim Kingdon, 8-Jan-2026.)
prefix Fn (V × ℕ0)
 
7-Jan-2026pr1or2 7335 An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
((𝐴𝐶𝐵𝐷DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))
 
6-Jan-2026upgr1elem1 15885 Lemma for upgr1edc 15886. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.)
(𝜑 → {𝐵, 𝐶} ∈ 𝑆)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑DECID 𝐵 = 𝐶)       (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥𝑆 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
 
3-Jan-2026dom1o 16266 Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
(𝐴𝑉 → (1o𝐴 ↔ ∃𝑗 𝑗𝐴))
 
3-Jan-2026df-umgren 15859 Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
 
3-Jan-2026df-upgren 15858 Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15859). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
 
3-Jan-2026en2m 6944 A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
(𝐴 ≈ 2o → ∃𝑥 𝑥𝐴)
 
3-Jan-2026en1m 6927 A set with one element is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
(𝐴 ≈ 1o → ∃𝑥 𝑥𝐴)
 
31-Dec-2025pw0ss 15848 There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
{𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = ∅
 
31-Dec-2025df-ushgrm 15835 Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.)
USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
 
29-Dec-2025df-uhgrm 15834 Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.)
UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
 
29-Dec-2025iedgex 15785 Applying the indexed edge function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
(𝐺𝑉 → (iEdg‘𝐺) ∈ V)
 
29-Dec-2025vtxex 15784 Applying the vertex function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
(𝐺𝑉 → (Vtx‘𝐺) ∈ V)
 
29-Dec-2025snmb 3767 A singleton is inhabited iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.)
(𝐴 ∈ V ↔ ∃𝑥 𝑥 ∈ {𝐴})
 
27-Dec-2025lswex 11089 Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11086 or lswcl 11088 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.)
(𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V)
 
23-Dec-2025fzowrddc 11145 Decidability of whether a range of integers is a subset of a word's domain. (Contributed by Jim Kingdon, 23-Dec-2025.)
((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID (𝐹..^𝐿) ⊆ dom 𝑆)
 
19-Dec-2025ccatclab 11095 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word (𝐴𝐵))
 
18-Dec-2025lswwrd 11084 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
(𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
 
14-Dec-20252strstrndx 13117 A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 14-Dec-2025.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
12-Dec-2025funiedgdm2vald 15798 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 12-Dec-2025.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑𝐺𝑋)    &   (𝜑 → Fun (𝐺 ∖ {∅}))    &   (𝜑𝐴𝐵)    &   (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺)       (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺))
 
11-Dec-2025funvtxdm2vald 15797 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑𝐺𝑋)    &   (𝜑 → Fun (𝐺 ∖ {∅}))    &   (𝜑𝐴𝐵)    &   (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺)       (𝜑 → (Vtx‘𝐺) = (Base‘𝐺))
 
11-Dec-2025funiedgdm2domval 15796 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺))
 
11-Dec-2025funvtxdm2domval 15795 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺))
 
4-Dec-2025hash2en 11032 Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.)
(𝑉 ≈ 2o ↔ (𝑉 ∈ Fin ∧ (♯‘𝑉) = 2))
 
30-Nov-2025nninfnfiinf 16300 An element of which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
 
27-Nov-2025psrelbasfi 14605 Simpler form of psrelbas 14604 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐼 ∈ Fin)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑𝑋:(ℕ0𝑚 𝐼)⟶𝐾)
 
26-Nov-2025mplsubgfileminv 14629 Lemma for mplsubgfi 14630. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑋𝑈)    &   𝑁 = (invg𝑆)       (𝜑 → (𝑁𝑋) ∈ 𝑈)
 
26-Nov-2025mplsubgfilemcl 14628 Lemma for mplsubgfi 14630. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &    + = (+g𝑆)       (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
 
25-Nov-2025nninfinfwlpo 7315 The point at infinity in being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of is decidable. From an online post by Martin Escardo. By contrast, elements of corresponding to natural numbers are isolated (nninfisol 7268). (Contributed by Jim Kingdon, 25-Nov-2025.)
(∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni)
 
23-Nov-2025psrbagfi 14602 A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼 ∈ Fin → 𝐷 = (ℕ0𝑚 𝐼))
 
22-Nov-2025df-acnm 7320 Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋AC 𝐴 is that for all families of inhabited subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶{𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗𝑗𝑧}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
 
21-Nov-2025mplsubgfilemm 14627 Lemma for mplsubgfi 14630. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)       (𝜑 → ∃𝑗 𝑗𝑈)
 
14-Nov-20252omapen 16271 Equinumerosity of (2o𝑚 𝐴) and the set of decidable subsets of 𝐴. (Contributed by Jim Kingdon, 14-Nov-2025.)
(𝐴𝑉 → (2o𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
 
12-Nov-20252omap 16270 Mapping between (2o𝑚 𝐴) and decidable subsets of 𝐴. (Contributed by Jim Kingdon, 12-Nov-2025.)
𝐹 = (𝑠 ∈ (2o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})       (𝐴𝑉𝐹:(2o𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
 
11-Nov-2025domomsubct 16278 A set dominated by ω is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
(𝐴 ≼ ω → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴))
 
10-Nov-2025prdsbaslemss 13273 Lemma for prdsbas 13275 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
𝑃 = (𝑆Xs𝑅)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅𝑊)    &   𝐴 = (𝐸𝑃)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ∈ ℕ    &   (𝜑𝑇𝑋)    &   (𝜑 → {⟨(𝐸‘ndx), 𝑇⟩} ⊆ 𝑃)       (𝜑𝐴 = 𝑇)
 
5-Nov-2025fnmpl 14622 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
mPoly Fn (V × V)
 
4-Nov-2025mplelbascoe 14621 Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → (𝑋𝑈 ↔ (𝑋𝐵 ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑋𝑏) = 0 ))))
 
4-Nov-2025mplbascoe 14620 Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
 
4-Nov-2025mplvalcoe 14619 Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}       ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
 
1-Nov-2025ficardon 7329 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
(𝐴 ∈ Fin → (card‘𝐴) ∈ On)
 
31-Oct-2025bitsdc 12424 Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → DECID 𝑀 ∈ (bits‘𝑁))
 
28-Oct-2025nn0maxcl 11702 The maximum of two nonnegative integers is a nonnegative integer. (Contributed by Jim Kingdon, 28-Oct-2025.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℕ0)
 
28-Oct-2025qdcle 10433 Rational is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴𝐵)
 
17-Oct-2025plycoeid3 15396 Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
(𝜑𝐷 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝑀 ∈ (ℤ𝐷))    &   (𝜑𝑋 ∈ ℂ)       (𝜑 → (𝐹𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗)))
 
13-Oct-2025tpfidceq 7060 A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
(𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝐷)    &   (𝜑 → ∀𝑥𝐷𝑦𝐷 DECID 𝑥 = 𝑦)       (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
 
13-Oct-2025prfidceq 7058 A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)    &   (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)       (𝜑 → {𝐴, 𝐵} ∈ Fin)
 
13-Oct-2025dcun 3581 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.)
(𝜑DECID 𝐶𝐴)    &   (𝜑DECID 𝐶𝐵)       (𝜑DECID 𝐶 ∈ (𝐴𝐵))
 
9-Oct-2025dvdsfi 12727 A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.)
(𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
 
7-Oct-2025df-mplcoe 14593 Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is 𝑖, the coefficients are in ring 𝑟, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for 𝑟). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
 
6-Oct-2025dvconstss 15337 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝑋𝐽)    &   (𝜑𝐴 ∈ ℂ)       (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
 
6-Oct-2025dcfrompeirce 1472 The decidability of a proposition 𝜒 follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 918), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
(𝜑 ↔ (𝜒 ∨ ¬ 𝜒))    &   (𝜓 ↔ ⊥)    &   (((𝜑𝜓) → 𝜑) → 𝜑)       DECID 𝜒
 
6-Oct-2025dcfromcon 1471 The decidability of a proposition 𝜒 follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 857), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
(𝜑 ↔ (𝜒 ∨ ¬ 𝜒))    &   (𝜓 ↔ ⊤)    &   ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))       DECID 𝜒
 
6-Oct-2025dcfromnotnotr 1470 The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 847), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
(𝜑 ↔ (𝜓 ∨ ¬ 𝜓))    &   (¬ ¬ 𝜑𝜑)       DECID 𝜓
 
3-Oct-2025dvidre 15336 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
(ℝ D ( I ↾ ℝ)) = (ℝ × {1})
 
3-Oct-2025dvconstre 15335 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝐴 ∈ ℂ → (ℝ D (ℝ × {𝐴})) = (ℝ × {0}))
 
3-Oct-2025dvidsslem 15332 Lemma for dvconstss 15337. Analogue of dvidlemap 15330 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝐽)    &   ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
 
3-Oct-2025dvidrelem 15331 Lemma for dvidre 15336 and dvconstre 15335. Analogue of dvidlemap 15330 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵}))
 
28-Sep-2025metuex 14484 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
(𝐴𝑉 → (metUnif‘𝐴) ∈ V)
 
28-Sep-2025cndsex 14482 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
(abs ∘ − ) ∈ V
 
25-Sep-2025cntopex 14483 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
(MetOpen‘(abs ∘ − )) ∈ V
 
24-Sep-2025mopnset 14481 Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
(𝐷𝑉 → (MetOpen‘𝐷) ∈ V)
 
24-Sep-2025blfn 14480 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
ball Fn V
 
23-Sep-2025elfzoext 10365 Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.)
((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))
 
22-Sep-2025plycjlemc 15399 Lemma for plycj 15400. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
(𝜑𝑁 ∈ ℕ0)    &   𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
 
20-Sep-2025plycolemc 15397 Lemma for plyco 15398. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
 
18-Sep-2025elfzoextl 10364 Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.)
((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁)))
 
16-Sep-2025lgsquadlemofi 15720 Lemma for lgsquad 15724. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
 
16-Sep-2025lgsquadlemsfi 15719 Lemma for lgsquad 15724. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑𝑆 ∈ Fin)
 
16-Sep-2025opabfi 7068 Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)       (𝜑𝑆 ∈ Fin)
 
13-Sep-2025uchoice 6253 Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7357 (with the key difference being the change of to ∃!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
 
11-Sep-2025expghmap 14536 Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
𝑀 = (mulGrp‘ℂfld)    &   𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0})       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
 
11-Sep-2025cnfldui 14518 The invertible complex numbers are exactly those apart from zero. This is recapb 8786 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
{𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
 
9-Sep-2025gsumfzfsumlemm 14516 Lemma for gsumfzfsum 14517. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
9-Sep-2025gsumfzfsumlem0 14515 Lemma for gsumfzfsum 14517. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
9-Sep-2025gsumfzmhm2 13847 Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑋𝐵)    &   (𝑥 = 𝑋𝐶 = 𝐷)    &   (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸)       (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸)
 
8-Sep-2025gsumfzmhm 13846 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
 
8-Sep-20255ndvds6 12412 5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
¬ 5 ∥ 6
 
8-Sep-20255ndvds3 12411 5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
¬ 5 ∥ 3
 
6-Sep-2025gsumfzconst 13844 Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
 
31-Aug-2025gsumfzmptfidmadd 13842 The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)    &   𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)    &   𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)       (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
 
30-Aug-2025gsumfzsubmcl 13841 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
(𝜑𝐺 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝑆)       (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)
 
30-Aug-2025seqm1g 10663 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑+𝑉)    &   (𝜑𝐹𝑊)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
 
29-Aug-2025seqf1og 10710 Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐶𝑆)    &   (𝜑+𝑉)    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 
25-Aug-2025irrmulap 9811 The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9810. (Contributed by Jim Kingdon, 25-Aug-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝑄 ∈ ℚ)       (𝜑 → (𝐴 · 𝐵) # 𝑄)

  Copyright terms: Public domain W3C HTML validation [external]