Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 26-Jul-2024 at 6:16 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
23-Jul-2024dceqnconst 13423 Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 13422 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
(∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
 
15-Jul-2024fprodseq 11384 The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
 
14-Jul-2024rexbid2 2443 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
𝑥𝜑    &   (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
14-Jul-2024ralbid2 2442 Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
𝑥𝜑    &   (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
12-Jul-20242irrexpqap 13103 There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 11894, 2logb9irrap 13102 and sqrt2cxp2logb9e3 13100. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ)
 
12-Jul-20242logb9irrap 13102 Example for logbgcd1irrap 13095. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.)
(𝑄 ∈ ℚ → (2 logb 9) # 𝑄)
 
11-Jul-2024logbgcd1irraplemexp 13093 Lemma for logbgcd1irrap 13095. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
(𝜑𝑋 ∈ (ℤ‘2))    &   (𝜑𝐵 ∈ (ℤ‘2))    &   (𝜑 → (𝑋 gcd 𝐵) = 1)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑋𝑁) # (𝐵𝑀))
 
11-Jul-2024reapef 12907 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵)))
 
10-Jul-2024apcxp2 13066 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
(((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴𝑐𝐵) # (𝐴𝑐𝐶)))
 
9-Jul-2024logbgcd1irraplemap 13094 Lemma for logbgcd1irrap 13095. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
(𝜑𝑋 ∈ (ℤ‘2))    &   (𝜑𝐵 ∈ (ℤ‘2))    &   (𝜑 → (𝑋 gcd 𝐵) = 1)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
 
9-Jul-2024apexp1 10496 Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))
 
5-Jul-2024logrpap0 13006 The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.)
((𝐴 ∈ ℝ+𝐴 # 1) → (log‘𝐴) # 0)
 
3-Jul-2024rplogbval 13070 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
3-Jul-2024logrpap0d 13007 Deduction form of logrpap0 13006. (Contributed by Jim Kingdon, 3-Jul-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐴 # 1)       (𝜑 → (log‘𝐴) # 0)
 
3-Jul-2024logrpap0b 13005 The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
(𝐴 ∈ ℝ+ → (𝐴 # 1 ↔ (log‘𝐴) # 0))
 
28-Jun-20242o01f 13364 Mapping zero and one between ω and 0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐺 ↾ 2o):2o⟶{0, 1}
 
28-Jun-2024012of 13363 Mapping zero and one between 0 and ω style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐺 ↾ {0, 1}):{0, 1}⟶2o
 
27-Jun-2024iooreen 13427 An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.)
(0(,)1) ≈ ℝ
 
27-Jun-2024iooref1o 13426 A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥))))       𝐹:ℝ–1-1-onto→(0(,)1)
 
25-Jun-2024neapmkvlem 13424 Lemma for neapmkv 13425. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   ((𝜑𝐴 ≠ 1) → 𝐴 # 1)       (𝜑 → (¬ ∀𝑥 ∈ ℕ (𝐹𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
 
25-Jun-2024ismkvnn 13420 The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1 → ∃𝑥𝐴 (𝑓𝑥) = 0)))
 
25-Jun-2024ismkvnnlem 13419 Lemma for ismkvnn 13420. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1 → ∃𝑥𝐴 (𝑓𝑥) = 0)))
 
25-Jun-2024enmkvlem 7043 Lemma for enmkv 7044. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov))
 
24-Jun-2024neapmkv 13425 If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ω ∈ Markov)
 
24-Jun-2024enmkv 7044 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or 0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6335 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov))
 
21-Jun-2024redcwlpolemeq1 13421 Lemma for redcwlpo 13422. A biconditionalized version of trilpolemeq1 13408. (Contributed by Jim Kingdon, 21-Jun-2024.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))       (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹𝑥) = 1))
 
20-Jun-2024redcwlpo 13422 Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 13421). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10055 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
 
20-Jun-2024iswomninn 13418 Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7048 but it will sometimes be more convenient to use 0 and 1 rather than and 1o. (Contributed by Jim Kingdon, 20-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1))
 
20-Jun-2024iswomninnlem 13417 Lemma for iswomnimap 7048. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1))
 
20-Jun-2024enwomni 7051 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or 0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6335 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))
 
20-Jun-2024enwomnilem 7050 Lemma for enwomni 7051. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
 
19-Jun-2024rpabscxpbnd 13067 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → 0 < (ℜ‘𝐵))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) ≤ 𝑀)       (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
 
16-Jun-2024rpcxpsqrt 13050 The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.)
(𝐴 ∈ ℝ+ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
 
13-Jun-2024rpcxpadd 13034 Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 + 𝐶)) = ((𝐴𝑐𝐵) · (𝐴𝑐𝐶)))
 
12-Jun-2024cxpap0 13033 Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) # 0)
 
12-Jun-2024rpcncxpcl 13031 Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
 
12-Jun-2024rpcxp0 13027 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
(𝐴 ∈ ℝ+ → (𝐴𝑐0) = 1)
 
12-Jun-2024cxpexpnn 13025 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
12-Jun-2024cxpexprp 13024 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
12-Jun-2024rpcxpef 13023 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
 
12-Jun-2024df-rpcxp 12988 Define the power function on complex numbers. Because df-relog 12987 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
 
10-Jun-2024trirec0xor 13413 Version of trirec0 13412 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
 
10-Jun-2024trirec0 13412 Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 13411). (Contributed by Jim Kingdon, 10-Jun-2024.)

(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
 
9-Jun-2024omniwomnimkv 7049 A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))
 
9-Jun-2024iswomnimap 7048 The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
 
9-Jun-2024iswomni 7047 The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
 
9-Jun-2024df-womni 7046 A weakly omniscient set is one where we can decide whether a predicate (here represented by a function 𝑓) holds (is equal to 1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
 
29-May-2024pw1nct 13371 A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
(∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o))
 
28-May-2024sssneq 13370 Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
(𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
 
24-May-2024dvmptcjx 12894 Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋 ⊆ ℝ)       (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
 
22-May-2024efltlemlt 12903 Lemma for eflt 12904. The converse of efltim 11441 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (exp‘𝐴) < (exp‘𝐵))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))       (𝜑𝐴 < 𝐵)
 
21-May-2024eflt 12904 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
 
19-May-2024apdifflemr 13415 Lemma for apdiff 13416. (Contributed by Jim Kingdon, 19-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑆 ∈ ℚ)    &   (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))    &   ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))       (𝜑𝐴 # 𝑆)
 
18-May-2024apdifflemf 13414 Lemma for apdiff 13416. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑄 ∈ ℚ)    &   (𝜑𝑅 ∈ ℚ)    &   (𝜑𝑄 < 𝑅)    &   (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)       (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
 
17-May-2024apdiff 13416 The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
(𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))))
 
15-May-2024reeff1oleme 12901 Lemma for reeff1o 12902. (Contributed by Jim Kingdon, 15-May-2024.)
(𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
14-May-2024df-relog 12987 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
log = (exp ↾ ℝ)
 
7-May-2024ioocosf1o 12983 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
(cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
 
7-May-2024cos0pilt1 12981 Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.)
(𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))
 
6-May-2024cos11 12982 Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵)))
 
5-May-2024omiunct 11993 The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 11989 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
(𝜑CCHOICE)    &   ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
 
5-May-2024ctiunctal 11990 Variation of ctiunct 11989 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
 
3-May-2024cc4n 7103 Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7102, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
(𝜑CCHOICE)    &   (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
 
3-May-2024cc4f 7101 Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
(𝜑CCHOICE)    &   (𝜑𝐴𝑉)    &   𝑛𝐴    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
 
1-May-2024cc4 7102 Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
(𝜑CCHOICE)    &   (𝜑𝐴𝑉)    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
 
29-Apr-2024cc3 7100 Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑 → ∀𝑛𝑁 𝐹 ∈ V)    &   (𝜑 → ∀𝑛𝑁𝑤 𝑤𝐹)    &   (𝜑𝑁 ≈ ω)       (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐹))
 
27-Apr-2024cc2 7099 Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑𝐹 Fn ω)    &   (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))       (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
 
27-Apr-2024cc2lem 7098 Lemma for cc2 7099. (Contributed by Jim Kingdon, 27-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑𝐹 Fn ω)    &   (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))    &   𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))    &   𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))       (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
 
27-Apr-2024cc1 7097 Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
(CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
 
19-Apr-2024omctfn 11992 Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
(𝜑CCHOICE)    &   ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
 
13-Apr-2024prodmodclem2 11378 Lemma for prodmodc 11379. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
 
11-Apr-2024prodmodclem2a 11377 Lemma for prodmodc 11379. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
 
11-Apr-2024prodmodclem3 11376 Lemma for prodmodc 11379. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)       (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
 
10-Apr-2024jcnd 642 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
(𝜑𝜓)    &   (𝜑 → ¬ 𝜒)       (𝜑 → ¬ (𝜓𝜒))
 
4-Apr-2024prodrbdclem 11372 Lemma for prodrbdc 11375. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
 
24-Mar-2024prodfdivap 11348 The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
 
24-Mar-2024prodfrecap 11347 The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)       (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
 
23-Mar-2024prodfap0 11346 The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)       (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
 
22-Mar-2024prod3fmul 11342 The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁)))
 
21-Mar-2024df-proddc 11352 Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sumdc 11155 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
 
19-Mar-2024cos02pilt1 12980 Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
 
19-Mar-2024cosq34lt1 12979 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
 
14-Mar-2024coseq0q4123 12963 Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.)
(𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
 
14-Mar-2024cosq23lt0 12962 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
(𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
 
9-Mar-2024pilem3 12912 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
9-Mar-2024exmidonfin 7067 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6774 and nnon 4531. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
(ω = (On ∩ Fin) → EXMID)
 
9-Mar-2024exmidonfinlem 7066 Lemma for exmidonfin 7067. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}       (ω = (On ∩ Fin) → DECID 𝜑)
 
8-Mar-2024sin0pilem2 12911 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
 
8-Mar-2024sin0pilem1 12910 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
 
7-Mar-2024cosz12 12909 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
 
6-Mar-2024cos12dec 11510 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
 
25-Feb-2024mul2lt0pn 9581 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐵 · 𝐴) < 0)
 
25-Feb-2024mul2lt0np 9580 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐴 · 𝐵) < 0)
 
25-Feb-2024lt0ap0 8434 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0)
 
25-Feb-2024negap0d 8417 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → -𝐴 # 0)
 
24-Feb-2024lt0ap0d 8435 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑𝐴 # 0)
 
20-Feb-2024ivthdec 12830 The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
20-Feb-2024ivthinclemex 12828 Lemma for ivthinc 12829. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
 
19-Feb-2024ivthinclemuopn 12824 Lemma for ivthinc 12829. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}    &   (𝜑𝑆𝑅)       (𝜑 → ∃𝑞𝑅 𝑞 < 𝑆)
 
19-Feb-2024dedekindicc 12819 A Dedekind cut identifies a unique real number. Similar to df-inp 7298 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))

  Copyright terms: Public domain W3C HTML validation [external]