Recent Additions to the Intuitionistic Logic
Explorer
Date | Label | Description |
Theorem |
|
17-Mar-2023 | finct 6848 |
A finite set is countable. (Contributed by Jim Kingdon,
17-Mar-2023.)
|
⊢ (𝐴 ∈ Fin → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
|
16-Mar-2023 | ctmlemr 6844 |
Lemma for ctm 6845. One of the directions of the biconditional.
(Contributed by Jim Kingdon, 16-Mar-2023.)
|
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))) |
|
15-Mar-2023 | caseinl 6836 |
Applying the "case" construction to a left injection. (Contributed
by
Jim Kingdon, 15-Mar-2023.)
|
⊢ (𝜑 → 𝐹 Fn 𝐵)
& ⊢ (𝜑 → Fun 𝐺)
& ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹‘𝐴)) |
|
13-Mar-2023 | enumct 6847 |
A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen],
p. 73 (except that our definition of countable does not require the set
to be inhabited). "Finitely enumerable" is defined as
∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 per Definition 8.1.4 of
[AczelRathjen], p. 71 and
"countable" is defined as
∃𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3.
(Contributed by Jim Kingdon, 13-Mar-2023.)
|
⊢ (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
|
13-Mar-2023 | enumctlemm 6846 |
Lemma for enumct 6847. The case where 𝑁 is greater than zero.
(Contributed by Jim Kingdon, 13-Mar-2023.)
|
⊢ (𝜑 → 𝐹:𝑁–onto→𝐴)
& ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∅ ∈ 𝑁) & ⊢ 𝐺 = (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑁, (𝐹‘𝑘), (𝐹‘∅)))
⇒ ⊢ (𝜑 → 𝐺:ω–onto→𝐴) |
|
13-Mar-2023 | ctm 6845 |
Two equivalent definitions of countable for an inhabited set. Remark of
[BauerSwan], p. 14:3. (Contributed by
Jim Kingdon, 13-Mar-2023.)
|
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔
∃𝑓 𝑓:ω–onto→𝐴)) |
|
13-Mar-2023 | 0ct 6843 |
The empty set is countable. Remark of [BauerSwan], p. 14:3 which also
has the definition of countable used here. (Contributed by Jim Kingdon,
13-Mar-2023.)
|
⊢ ∃𝑓 𝑓:ω–onto→(∅ ⊔
1o) |
|
13-Mar-2023 | ctex 6524 |
A class dominated by ω is a set. (Contributed by
Thierry Arnoux,
29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
|
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
|
12-Mar-2023 | cls0 11894 |
The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof
shortened by Jim Kingdon, 12-Mar-2023.)
|
⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘∅) =
∅) |
|
12-Mar-2023 | algrp1 11367 |
The value of the algorithm iterator 𝑅 at (𝐾 + 1).
(Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon,
12-Mar-2023.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
|
12-Mar-2023 | ialgr0 11365 |
The value of the algorithm iterator 𝑅 at 0 is the
initial state
𝐴. (Contributed by Paul Chapman,
31-Mar-2011.) (Revised by Jim
Kingdon, 12-Mar-2023.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) |
|
11-Mar-2023 | ntreq0 11893 |
Two ways to say that a subset has an empty interior. (Contributed by
NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |
|
11-Mar-2023 | clstop 11888 |
The closure of a topology's underlying set is the entire set.
(Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon,
11-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋) |
|
11-Mar-2023 | ntrss 11880 |
Subset relationship for interior. (Contributed by NM, 3-Oct-2007.)
(Revised by Jim Kingdon, 11-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
|
10-Mar-2023 | iuncld 11876 |
A finite indexed union of closed sets is closed. (Contributed by Mario
Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
|
5-Mar-2023 | 2basgeng 11843 |
Conditions that determine the equality of two generated topologies.
(Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon,
5-Mar-2023.)
|
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
|
5-Mar-2023 | exmidsssn 4040 |
Excluded middle is equivalent to the biconditionalized version of
sssnr 3603 for sets. (Contributed by Jim Kingdon,
5-Mar-2023.)
|
⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
|
5-Mar-2023 | exmidn0m 4039 |
Excluded middle is equivalent to any set being empty or inhabited.
(Contributed by Jim Kingdon, 5-Mar-2023.)
|
⊢ (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) |
|
4-Mar-2023 | eltg3 11818 |
Membership in a topology generated by a basis. (Contributed by NM,
15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
|
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
|
4-Mar-2023 | tgvalex 11811 |
The topology generated by a basis is a set. (Contributed by Jim
Kingdon, 4-Mar-2023.)
|
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
|
16-Feb-2023 | ixp0 6502 |
The infinite Cartesian product of a family 𝐵(𝑥) with an empty
member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim
Kingdon, 16-Feb-2023.)
|
⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈
𝐴 𝐵 = ∅) |
|
16-Feb-2023 | ixpm 6501 |
If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited,
every 𝐵(𝑥) is inhabited. (Contributed by Mario
Carneiro,
22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
|
⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
|
16-Feb-2023 | exmidundifim 4044 |
Excluded middle is equivalent to every subset having a complement.
Variation of exmidundif 4043 with an implication rather than a
biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.)
|
⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) |
|
15-Feb-2023 | ixpintm 6496 |
The intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
|
15-Feb-2023 | ixpiinm 6495 |
The indexed intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩
𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) |
|
15-Feb-2023 | ixpexgg 6493 |
The existence of an infinite Cartesian product. 𝑥 is normally a
free-variable parameter in 𝐵. Remark in Enderton p. 54.
(Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
⊢ ((𝐴 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
|
15-Feb-2023 | nfixpxy 6488 |
Bound-variable hypothesis builder for indexed Cartesian product.
(Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
|
13-Feb-2023 | topnpropgd 11727 |
The topology extractor function depends only on the base and topology
components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon,
13-Feb-2023.)
|
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉)
& ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
|
12-Feb-2023 | slotex 11582 |
Existence of slot value. A corollary of slotslfn 11581. (Contributed by
Jim Kingdon, 12-Feb-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈
ℕ) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
|
11-Feb-2023 | topnvalg 11725 |
Value of the topology extractor function. (Contributed by Mario
Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
|
10-Feb-2023 | slotslfn 11581 |
A slot is a function on sets, treated as structures. (Contributed by
Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈
ℕ) ⇒ ⊢ 𝐸 Fn V |
|
9-Feb-2023 | pleslid 11712 |
Slot property of le. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
⊢ (le = Slot (le‘ndx) ∧
(le‘ndx) ∈ ℕ) |
|
9-Feb-2023 | topgrptsetd 11709 |
The topology of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) |
|
9-Feb-2023 | topgrpplusgd 11708 |
The additive operation of a constructed topological group. (Contributed
by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon,
9-Feb-2023.)
|
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
|
9-Feb-2023 | topgrpbasd 11707 |
The base set of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
|
9-Feb-2023 | topgrpstrd 11706 |
A constructed topological group is a structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
|
9-Feb-2023 | tsetslid 11705 |
Slot property of TopSet. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
⊢ (TopSet = Slot (TopSet‘ndx) ∧
(TopSet‘ndx) ∈ ℕ) |
|
8-Feb-2023 | ipsipd 11702 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 =
(·𝑖‘𝐴)) |
|
8-Feb-2023 | ipsvscad 11701 |
The scalar product operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝐴)) |
|
8-Feb-2023 | ipsscad 11700 |
The set of scalars of a constructed inner product space. (Contributed
by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) |
|
7-Feb-2023 | ipsmulrd 11699 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × =
(.r‘𝐴)) |
|
7-Feb-2023 | ipsaddgd 11698 |
The additive operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + =
(+g‘𝐴)) |
|
7-Feb-2023 | ipsbased 11697 |
The base set of a constructed inner product space. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
|
7-Feb-2023 | ipsstrd 11696 |
A constructed inner product space is a structure. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
|
7-Feb-2023 | ipslid 11695 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
|
7-Feb-2023 | lmodvscad 11692 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
|
6-Feb-2023 | lmodscad 11691 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
|
6-Feb-2023 | lmodplusgd 11690 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
|
6-Feb-2023 | lmodbased 11689 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
|
5-Feb-2023 | lmodstrd 11688 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
|
5-Feb-2023 | vscaslid 11687 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
|
5-Feb-2023 | scaslid 11684 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
|
5-Feb-2023 | srngplusgd 11679 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
|
5-Feb-2023 | srngbased 11678 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
|
5-Feb-2023 | srngstrd 11677 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
|
5-Feb-2023 | opelstrsl 11651 |
The slot of a structure which contains an ordered pair for that slot.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
|
4-Feb-2023 | starvslid 11676 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
|
3-Feb-2023 | rngbaseg 11671 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
|
3-Feb-2023 | rngstrg 11670 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
|
3-Feb-2023 | mulrslid 11667 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
|
3-Feb-2023 | plusgslid 11650 |
Slot property of +g. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
⊢ (+g = Slot
(+g‘ndx) ∧ (+g‘ndx) ∈
ℕ) |
|
2-Feb-2023 | 2strop1g 11660 |
The other slot of a constructed two-slot structure. Version of
2stropg 11657 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
|
2-Feb-2023 | 2strbas1g 11659 |
The base set of a constructed two-slot structure. Version of 2strbasg 11656
not depending on the hard-coded index value of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
2-Feb-2023 | 2strstr1g 11658 |
A constructed two-slot structure. Version of 2strstrg 11655 not depending
on the hard-coded index value of the base set. (Contributed by AV,
22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
|
31-Jan-2023 | baseslid 11611 |
The base set extractor is a slot. (Contributed by Jim Kingdon,
31-Jan-2023.)
|
⊢ (Base = Slot (Base‘ndx) ∧
(Base‘ndx) ∈ ℕ) |
|
31-Jan-2023 | strsl0 11603 |
All components of the empty set are empty sets. (Contributed by Stefan
O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈
ℕ) ⇒ ⊢ ∅ = (𝐸‘∅) |
|
31-Jan-2023 | strslss 11602 |
Propagate component extraction to a structure 𝑇 from a subset
structure 𝑆. (Contributed by Mario Carneiro,
11-Oct-2013.)
(Revised by Jim Kingdon, 31-Jan-2023.)
|
⊢ 𝑇 ∈ V & ⊢ Fun 𝑇 & ⊢ 𝑆 ⊆ 𝑇
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
|
31-Jan-2023 | strslssd 11601 |
Deduction version of strslss 11602. (Contributed by Mario Carneiro,
15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by
Jim Kingdon, 31-Jan-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ 𝑉)
& ⊢ (𝜑 → Fun 𝑇)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
|
30-Jan-2023 | strslfv3 11600 |
Variant on strslfv 11599 for large structures. (Contributed by Mario
Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
|
⊢ (𝜑 → 𝑈 = 𝑆)
& ⊢ 𝑆 Struct 𝑋
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆
& ⊢ (𝜑 → 𝐶 ∈ 𝑉)
& ⊢ 𝐴 = (𝐸‘𝑈) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) |
|
30-Jan-2023 | strslfv 11599 |
Extract a structure component 𝐶 (such as the base set) from a
structure 𝑆 with a component extractor 𝐸 (such
as the base set
extractor df-base 11561). By virtue of ndxslid 11580, this can be done
without having to refer to the hard-coded numeric index of 𝐸.
(Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon,
30-Jan-2023.)
|
⊢ 𝑆 Struct 𝑋
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
|
30-Jan-2023 | strslfv2 11598 |
A variation on strslfv 11599 to avoid asserting that 𝑆 itself
is a
function, which involves sethood of all the ordered pair components of
𝑆. (Contributed by Mario Carneiro,
30-Apr-2015.) (Revised by Jim
Kingdon, 30-Jan-2023.)
|
⊢ 𝑆 ∈ V & ⊢ Fun ◡◡𝑆
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
|
30-Jan-2023 | strslfv2d 11597 |
Deduction version of strslfv 11599. (Contributed by Mario Carneiro,
30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → Fun ◡◡𝑆)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
|
30-Jan-2023 | strslfvd 11596 |
Deduction version of strslfv 11599. (Contributed by Mario Carneiro,
15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → Fun 𝑆)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
|
30-Jan-2023 | strsetsid 11588 |
Value of the structure replacement function. (Contributed by AV,
14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
|
⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑆)
& ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
|
30-Jan-2023 | funresdfunsndc 6279 |
Restricting a function to a domain without one element of the domain of
the function, and adding a pair of this element and the function value
of the element results in the function itself, where equality is
decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon,
30-Jan-2023.)
|
⊢ ((∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) |
|
29-Jan-2023 | ndxslid 11580 |
A structure component extractor is defined by its own index. That the
index is a natural number will also be needed in quite a few contexts so
it is included in the conclusion of this theorem which can be used as a
hypothesis of theorems like strslfv 11599. (Contributed by Jim Kingdon,
29-Jan-2023.)
|
⊢ 𝐸 = Slot 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈
ℕ) |
|
29-Jan-2023 | fnsnsplitdc 6278 |
Split a function into a single point and all the rest. (Contributed by
Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
|
⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
|
28-Jan-2023 | 2stropg 11657 |
The other slot of a constructed two-slot structure. (Contributed by
Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
|
28-Jan-2023 | 2strbasg 11656 |
The base set of a constructed two-slot structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
28-Jan-2023 | 2strstrg 11655 |
A constructed two-slot structure. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
|
28-Jan-2023 | 1strstrg 11653 |
A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
(Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) |
|
27-Jan-2023 | strle2g 11646 |
Make a structure from a pair. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
|
27-Jan-2023 | strle1g 11645 |
Make a structure from a singleton. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
|
27-Jan-2023 | strleund 11643 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
|
26-Jan-2023 | ressid2 11614 |
General behavior of trivial restriction. (Contributed by Stefan O'Rear,
29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
|
⊢ 𝑅 = (𝑊 ↾s 𝐴)
& ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
|
24-Jan-2023 | setsslnid 11606 |
Value of the structure replacement function at an untouched index.
(Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon,
24-Jan-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠ 𝐷 & ⊢ 𝐷 ∈
ℕ ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
|
24-Jan-2023 | setsslid 11605 |
Value of the structure replacement function at a replaced index.
(Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon,
24-Jan-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈
ℕ) ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝐸‘(𝑊 sSet 〈(𝐸‘ndx), 𝐶〉))) |
|
22-Jan-2023 | setsabsd 11594 |
Replacing the same components twice yields the same as the second
setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by
Jim Kingdon, 22-Jan-2023.)
|
⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → 𝐴 ∈ 𝑊)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
|
22-Jan-2023 | setsresg 11593 |
The structure replacement function does not affect the value of 𝑆 away
from 𝐴. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by
Jim Kingdon, 22-Jan-2023.)
|
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
|
22-Jan-2023 | setsex 11587 |
Applying the structure replacement function yields a set. (Contributed by
Jim Kingdon, 22-Jan-2023.)
|
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
|
22-Jan-2023 | 2zsupmax 10718 |
Two ways to express the maximum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 22-Jan-2023.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
|
22-Jan-2023 | elpwpwel 4310 |
A class belongs to a double power class if and only if its union belongs
to the power class. (Contributed by BJ, 22-Jan-2023.)
|
⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴
∈ 𝒫 𝐵) |
|
21-Jan-2023 | funresdfunsnss 5514 |
Restricting a function to a domain without one element of the domain of
the function, and adding a pair of this element and the function value of
the element results in a subset of the function itself. (Contributed by
AV, 2-Dec-2018.) (Revised by Jim Kingdon, 21-Jan-2023.)
|
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) |
|
20-Jan-2023 | setsvala 11586 |
Value of the structure replacement function. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.)
|
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
|
20-Jan-2023 | fnsnsplitss 5510 |
Split a function into a single point and all the rest. (Contributed by
Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.)
|
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) |
|
19-Jan-2023 | strfvssn 11577 |
A structure component extractor produces a value which is contained in a
set dependent on 𝑆, but not 𝐸. This is sometimes
useful for
showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.)
(Revised by Jim Kingdon, 19-Jan-2023.)
|
⊢ 𝐸 = Slot 𝑁
& ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran
𝑆) |
|
19-Jan-2023 | strnfvn 11576 |
Value of a structure component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 11561) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section,
because it requires hard-coded index values. Instead, use strslfv 11599.
(Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.)
(New usage is discouraged.)
|
⊢ 𝑆 ∈ V & ⊢ 𝐸 = Slot 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
|
19-Jan-2023 | strnfvnd 11575 |
Deduction version of strnfvn 11576. (Contributed by Mario Carneiro,
15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
|
⊢ 𝐸 = Slot 𝑁
& ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
|
18-Jan-2023 | isstructr 11570 |
The property of being a structure with components in 𝑀...𝑁.
(Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon,
18-Jan-2023.)
|
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
|
18-Jan-2023 | isstructim 11569 |
The property of being a structure with components in 𝑀...𝑁.
(Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon,
18-Jan-2023.)
|
⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) |