Recent Additions to the Intuitionistic Logic
Explorer
| Date | Label | Description |
| Theorem |
| |
| 20-Jan-2026 | cats1fvd 11264 |
A symbol other than the last in a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim
Kingdon, 20-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑆) = 𝑀)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆‘𝑁) = 𝑌)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝑇‘𝑁) = 𝑌) |
| |
| 20-Jan-2026 | cats1fvnd 11263 |
The last symbol of a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim
Kingdon, 20-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → (♯‘𝑆) = 𝑀) ⇒ ⊢ (𝜑 → (𝑇‘𝑀) = 𝑋) |
| |
| 19-Jan-2026 | cats2catd 11267 |
Closure of concatenation of concatenations with singleton words.
(Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon,
19-Jan-2026.)
|
| ⊢ (𝜑 → 𝐵 ∈ Word V) & ⊢ (𝜑 → 𝐷 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑊)
& ⊢ (𝜑 → 𝐴 = (𝐵 ++ 〈“𝑋”〉)) & ⊢ (𝜑 → 𝐶 = (〈“𝑌”〉 ++ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷)) |
| |
| 19-Jan-2026 | cats1catd 11266 |
Closure of concatenation with a singleton word. (Contributed by Mario
Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝐴 ∈ Word V) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 = (𝐵 ++ 〈“𝑋”〉)) & ⊢ (𝜑 → 𝐵 = (𝐴 ++ 𝑆)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ++ 𝑇)) |
| |
| 19-Jan-2026 | cats1lend 11265 |
The length of concatenation with a singleton word. (Contributed by
Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon,
19-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (♯‘𝑆) = 𝑀
& ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (𝜑 → (♯‘𝑇) = 𝑁) |
| |
| 18-Jan-2026 | rexanaliim 2616 |
A transformation of restricted quantifiers and logical connectives.
(Contributed by NM, 4-Sep-2005.) (Revised by Jim Kingdon,
18-Jan-2026.)
|
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| |
| 15-Jan-2026 | df-uspgren 15918 |
Define the class of all undirected simple pseudographs (which could have
loops). An undirected simple pseudograph is a special undirected
pseudograph or a special undirected simple hypergraph, consisting of a
set 𝑣 (of "vertices") and an
injective (one-to-one) function 𝑒
(representing (indexed) "edges") into subsets of 𝑣 of
cardinality
one or two, representing the two vertices incident to the edge, or the
one vertex if the edge is a loop. In contrast to a pseudograph, there
is at most one edge between two vertices resp. at most one loop for a
vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
(Revised by Jim Kingdon, 15-Jan-2026.)
|
| ⊢ USPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}} |
| |
| 11-Jan-2026 | en2prde 7334 |
A set of size two is an unordered pair of two different elements.
(Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim
Kingdon, 11-Jan-2026.)
|
| ⊢ (𝑉 ≈ 2o → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
| |
| 10-Jan-2026 | pw1mapen 16273 |
Equinumerosity of (𝒫 1o
↑𝑚 𝐴) and the set of subsets of 𝐴.
(Contributed by Jim Kingdon, 10-Jan-2026.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝒫 1o
↑𝑚 𝐴) ≈ 𝒫 𝐴) |
| |
| 10-Jan-2026 | pw1if 7378 |
Expressing a truth value in terms of an if expression.
(Contributed
by Jim Kingdon, 10-Jan-2026.)
|
| ⊢ (𝐴 ∈ 𝒫 1o →
if(𝐴 = 1o,
1o, ∅) = 𝐴) |
| |
| 10-Jan-2026 | pw1m 7377 |
A truth value which is inhabited is equal to true. This is a variation
of pwntru 4262 and pwtrufal 16274. (Contributed by Jim Kingdon,
10-Jan-2026.)
|
| ⊢ ((𝐴 ∈ 𝒫 1o ∧
∃𝑥 𝑥 ∈ 𝐴) → 𝐴 = 1o) |
| |
| 10-Jan-2026 | 1ndom2 6994 |
Two is not dominated by one. (Contributed by Jim Kingdon,
10-Jan-2026.)
|
| ⊢ ¬ 2o ≼
1o |
| |
| 9-Jan-2026 | pw1map 16272 |
Mapping between (𝒫 1o
↑𝑚 𝐴) and subsets of 𝐴.
(Contributed
by Jim Kingdon, 9-Jan-2026.)
|
| ⊢ 𝐹 = (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})
⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:(𝒫 1o
↑𝑚 𝐴)–1-1-onto→𝒫 𝐴) |
| |
| 9-Jan-2026 | iftrueb01 7376 |
Using an if expression to represent a truth value by
∅ or
1o. Unlike some theorems using if, 𝜑 does not need to be
decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
|
| ⊢ (if(𝜑, 1o, ∅) = 1o
↔ 𝜑) |
| |
| 8-Jan-2026 | pfxclz 11177 |
Closure of the prefix extractor. This extends pfxclg 11176 from ℕ0 to
ℤ (negative lengths are trivial, resulting
in the empty word).
(Contributed by Jim Kingdon, 8-Jan-2026.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℤ) → (𝑆 prefix 𝐿) ∈ Word 𝐴) |
| |
| 8-Jan-2026 | fnpfx 11175 |
The domain of the prefix extractor. (Contributed by Jim Kingdon,
8-Jan-2026.)
|
| ⊢ prefix Fn (V ×
ℕ0) |
| |
| 7-Jan-2026 | pr1or2 7335 |
An unordered pair, with decidable equality for the specified elements, has
either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o)) |
| |
| 6-Jan-2026 | upgr1elem1 15885 |
Lemma for upgr1edc 15886. (Contributed by AV, 16-Oct-2020.)
(Revised by
Jim Kingdon, 6-Jan-2026.)
|
| ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → DECID 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ 𝑆 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}) |
| |
| 3-Jan-2026 | dom1o 16266 |
Two ways of saying that a set is inhabited. (Contributed by Jim
Kingdon, 3-Jan-2026.)
|
| ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑗 𝑗 ∈ 𝐴)) |
| |
| 3-Jan-2026 | df-umgren 15859 |
Define the class of all undirected multigraphs. An (undirected)
multigraph consists of a set 𝑣 (of "vertices") and a
function 𝑒
(representing indexed "edges") into subsets of 𝑣 of
cardinality two,
representing the two vertices incident to the edge. In contrast to a
pseudograph, a multigraph has no loop. This is according to Chartrand,
Gary and Zhang, Ping (2012): "A First Course in Graph
Theory.", Dover,
ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M
consists of
a finite nonempty set V of vertices and a set E of edges, where every
two vertices of M are joined by a finite number of edges (possibly
zero). If two or more edges join the same pair of (distinct) vertices,
then these edges are called parallel edges." (Contributed by AV,
24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
|
| ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| |
| 3-Jan-2026 | df-upgren 15858 |
Define the class of all undirected pseudographs. An (undirected)
pseudograph consists of a set 𝑣 (of "vertices") and a
function 𝑒
(representing indexed "edges") into subsets of 𝑣 of
cardinality one
or two, representing the two vertices incident to the edge, or the one
vertex if the edge is a loop. This is according to Chartrand, Gary and
Zhang, Ping (2012): "A First Course in Graph Theory.", Dover,
ISBN
978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only
are
parallel edges permitted but an edge is also permitted to join a vertex
to itself. Such an edge is called a loop." (in contrast to a
multigraph, see df-umgren 15859). (Contributed by Mario Carneiro,
11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon,
3-Jan-2026.)
|
| ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}} |
| |
| 3-Jan-2026 | en2m 6944 |
A set with two elements is inhabited. (Contributed by Jim Kingdon,
3-Jan-2026.)
|
| ⊢ (𝐴 ≈ 2o → ∃𝑥 𝑥 ∈ 𝐴) |
| |
| 3-Jan-2026 | en1m 6927 |
A set with one element is inhabited. (Contributed by Jim Kingdon,
3-Jan-2026.)
|
| ⊢ (𝐴 ≈ 1o → ∃𝑥 𝑥 ∈ 𝐴) |
| |
| 31-Dec-2025 | pw0ss 15848 |
There are no inhabited subsets of the empty set. (Contributed by Jim
Kingdon, 31-Dec-2025.)
|
| ⊢ {𝑠 ∈ 𝒫 ∅ ∣
∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| |
| 31-Dec-2025 | df-ushgrm 15835 |
Define the class of all undirected simple hypergraphs. An undirected
simple hypergraph is a special (non-simple, multiple, multi-) hypergraph
for which the edge function 𝑒 is an injective (one-to-one) function
into subsets of the set of vertices 𝑣, representing the (one or
more) vertices incident to the edge. This definition corresponds to the
definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that
the empty set seems to be allowed to be an "edge") or section
1.10 of
[Diestel] p. 27, where "E is a
subset of [...] the power set of V, that
is the set of all subsets of V" resp. "the elements of E are
nonempty
subsets (of any cardinality) of V". (Contributed by AV,
19-Jan-2020.)
(Revised by Jim Kingdon, 31-Dec-2025.)
|
| ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| |
| 29-Dec-2025 | df-uhgrm 15834 |
Define the class of all undirected hypergraphs. An undirected
hypergraph consists of a set 𝑣 (of "vertices") and a
function 𝑒
(representing indexed "edges") into the set of inhabited
subsets of this
set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised
by Jim Kingdon, 29-Dec-2025.)
|
| ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| |
| 29-Dec-2025 | iedgex 15785 |
Applying the indexed edge function yields a set. (Contributed by Jim
Kingdon, 29-Dec-2025.)
|
| ⊢ (𝐺 ∈ 𝑉 → (iEdg‘𝐺) ∈ V) |
| |
| 29-Dec-2025 | vtxex 15784 |
Applying the vertex function yields a set. (Contributed by Jim Kingdon,
29-Dec-2025.)
|
| ⊢ (𝐺 ∈ 𝑉 → (Vtx‘𝐺) ∈ V) |
| |
| 29-Dec-2025 | snmb 3767 |
A singleton is inhabited iff its argument is a set. (Contributed by
Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.)
|
| ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 ∈ {𝐴}) |
| |
| 27-Dec-2025 | lswex 11089 |
Existence of the last symbol. The last symbol of a word is a set. See
lsw0g 11086 or lswcl 11088 if you want more specific results
for empty or
nonempty words, respectively. (Contributed by Jim Kingdon,
27-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| |
| 23-Dec-2025 | fzowrddc 11145 |
Decidability of whether a range of integers is a subset of a word's
domain. (Contributed by Jim Kingdon, 23-Dec-2025.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
DECID (𝐹..^𝐿) ⊆ dom 𝑆) |
| |
| 19-Dec-2025 | ccatclab 11095 |
The concatenation of words over two sets is a word over the union of
those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word (𝐴 ∪ 𝐵)) |
| |
| 18-Dec-2025 | lswwrd 11084 |
Extract the last symbol of a word. (Contributed by Alexander van der
Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| |
| 14-Dec-2025 | 2strstrndx 13117 |
A constructed two-slot structure not depending on the hard-coded index
value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.)
(Revised by Jim Kingdon, 14-Dec-2025.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| |
| 12-Dec-2025 | funiedgdm2vald 15798 |
The set of indexed edges of an extensible structure with (at least) two
slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
12-Dec-2025.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐺 ∈ 𝑋)
& ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) & ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺)) |
| |
| 11-Dec-2025 | funvtxdm2vald 15797 |
The set of vertices of an extensible structure with (at least) two
slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
11-Dec-2025.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐺 ∈ 𝑋)
& ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) & ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = (Base‘𝐺)) |
| |
| 11-Dec-2025 | funiedgdm2domval 15796 |
The set of indexed edges of an extensible structure with (at least) two
slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon,
11-Dec-2025.)
|
| ⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ 2o
≼ dom 𝐺) →
(iEdg‘𝐺) =
(.ef‘𝐺)) |
| |
| 11-Dec-2025 | funvtxdm2domval 15795 |
The set of vertices of an extensible structure with (at least) two slots.
(Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon,
11-Dec-2025.)
|
| ⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ 2o
≼ dom 𝐺) →
(Vtx‘𝐺) =
(Base‘𝐺)) |
| |
| 4-Dec-2025 | hash2en 11032 |
Two equivalent ways to say a set has two elements. (Contributed by Jim
Kingdon, 4-Dec-2025.)
|
| ⊢ (𝑉 ≈ 2o ↔ (𝑉 ∈ Fin ∧
(♯‘𝑉) =
2)) |
| |
| 30-Nov-2025 | nninfnfiinf 16300 |
An element of ℕ∞ which is not
finite is infinite. (Contributed
by Jim Kingdon, 30-Nov-2025.)
|
| ⊢ ((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦
1o)) |
| |
| 27-Nov-2025 | psrelbasfi 14605 |
Simpler form of psrelbas 14604 when the index set is finite. (Contributed
by Jim Kingdon, 27-Nov-2025.)
|
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝐾 = (Base‘𝑅)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:(ℕ0
↑𝑚 𝐼)⟶𝐾) |
| |
| 26-Nov-2025 | mplsubgfileminv 14629 |
Lemma for mplsubgfi 14630. The additive inverse of a polynomial is a
polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
|
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝑃 = (𝐼 mPoly 𝑅)
& ⊢ 𝑈 = (Base‘𝑃)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ 𝑁 = (invg‘𝑆) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑈) |
| |
| 26-Nov-2025 | mplsubgfilemcl 14628 |
Lemma for mplsubgfi 14630. The sum of two polynomials is a
polynomial.
(Contributed by Jim Kingdon, 26-Nov-2025.)
|
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝑃 = (𝐼 mPoly 𝑅)
& ⊢ 𝑈 = (Base‘𝑃)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑈)
& ⊢ + =
(+g‘𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) |
| |
| 25-Nov-2025 | nninfinfwlpo 7315 |
The point at infinity in ℕ∞
being isolated is equivalent to the
Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that
the equality of that point with every other element of ℕ∞ is
decidable. From an online post by Martin Escardo. By contrast,
elements of ℕ∞
corresponding to natural numbers are isolated
(nninfisol 7268). (Contributed by Jim Kingdon, 25-Nov-2025.)
|
| ⊢ (∀𝑥 ∈ ℕ∞
DECID 𝑥 =
(𝑖 ∈ ω ↦
1o) ↔ ω ∈ WOmni) |
| |
| 23-Nov-2025 | psrbagfi 14602 |
A finite index set gives a simpler expression for finite bags.
(Contributed by Jim Kingdon, 23-Nov-2025.)
|
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0
↑𝑚 𝐼)) |
| |
| 22-Nov-2025 | df-acnm 7320 |
Define a local and length-limited version of the axiom of choice. The
definition of the predicate 𝑋 ∈ AC 𝐴 is that for all families of
inhabited subsets of 𝑋 indexed on 𝐴 (i.e. functions
𝐴⟶{𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗𝑗 ∈ 𝑧}), there is a function which
selects an element from each set in the family. (Contributed by Mario
Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim
Kingdon, 22-Nov-2025.)
|
| ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
| |
| 21-Nov-2025 | mplsubgfilemm 14627 |
Lemma for mplsubgfi 14630. There exists a polynomial. (Contributed
by
Jim Kingdon, 21-Nov-2025.)
|
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝑃 = (𝐼 mPoly 𝑅)
& ⊢ 𝑈 = (Base‘𝑃)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) |
| |
| 14-Nov-2025 | 2omapen 16271 |
Equinumerosity of (2o ↑𝑚
𝐴) and the set of
decidable subsets of
𝐴. (Contributed by Jim Kingdon,
14-Nov-2025.)
|
| ⊢ (𝐴 ∈ 𝑉 → (2o
↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| |
| 12-Nov-2025 | 2omap 16270 |
Mapping between (2o ↑𝑚
𝐴) and decidable
subsets of 𝐴.
(Contributed by Jim Kingdon, 12-Nov-2025.)
|
| ⊢ 𝐹 = (𝑠 ∈ (2o
↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})
⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑𝑚
𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| |
| 11-Nov-2025 | domomsubct 16278 |
A set dominated by ω is subcountable.
(Contributed by Jim
Kingdon, 11-Nov-2025.)
|
| ⊢ (𝐴 ≼ ω →
∃𝑠(𝑠 ⊆ ω ∧
∃𝑓 𝑓:𝑠–onto→𝐴)) |
| |
| 10-Nov-2025 | prdsbaslemss 13273 |
Lemma for prdsbas 13275 and similar theorems. (Contributed by Jim
Kingdon,
10-Nov-2025.)
|
| ⊢ 𝑃 = (𝑆Xs𝑅)
& ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → 𝑅 ∈ 𝑊)
& ⊢ 𝐴 = (𝐸‘𝑃)
& ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ∈
ℕ
& ⊢ (𝜑 → 𝑇 ∈ 𝑋)
& ⊢ (𝜑 → {〈(𝐸‘ndx), 𝑇〉} ⊆ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 = 𝑇) |
| |
| 5-Nov-2025 | fnmpl 14622 |
mPoly has universal domain. (Contributed by Jim
Kingdon,
5-Nov-2025.)
|
| ⊢ mPoly Fn (V × V) |
| |
| 4-Nov-2025 | mplelbascoe 14621 |
Property of being a polynomial. (Contributed by Mario Carneiro,
7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV,
25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
|
| ⊢ 𝑃 = (𝐼 mPoly 𝑅)
& ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 )))) |
| |
| 4-Nov-2025 | mplbascoe 14620 |
Base set of the set of multivariate polynomials. (Contributed by Mario
Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim
Kingdon, 4-Nov-2025.)
|
| ⊢ 𝑃 = (𝐼 mPoly 𝑅)
& ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) |
| |
| 4-Nov-2025 | mplvalcoe 14619 |
Value of the set of multivariate polynomials. (Contributed by Mario
Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim
Kingdon, 4-Nov-2025.)
|
| ⊢ 𝑃 = (𝐼 mPoly 𝑅)
& ⊢ 𝑆 = (𝐼 mPwSer 𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0
)} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s 𝑈)) |
| |
| 1-Nov-2025 | ficardon 7329 |
The cardinal number of a finite set is an ordinal. (Contributed by Jim
Kingdon, 1-Nov-2025.)
|
| ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) |
| |
| 31-Oct-2025 | bitsdc 12424 |
Whether a bit is set is decidable. (Contributed by Jim Kingdon,
31-Oct-2025.)
|
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) →
DECID 𝑀
∈ (bits‘𝑁)) |
| |
| 28-Oct-2025 | nn0maxcl 11702 |
The maximum of two nonnegative integers is a nonnegative integer.
(Contributed by Jim Kingdon, 28-Oct-2025.)
|
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ sup({𝐴, 𝐵}, ℝ, < ) ∈
ℕ0) |
| |
| 28-Oct-2025 | qdcle 10433 |
Rational ≤ is decidable. (Contributed by Jim
Kingdon,
28-Oct-2025.)
|
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) →
DECID 𝐴
≤ 𝐵) |
| |
| 17-Oct-2025 | plycoeid3 15396 |
Reconstruct a polynomial as an explicit sum of the coefficient function
up to an index no smaller than the degree of the polynomial.
(Contributed by Jim Kingdon, 17-Oct-2025.)
|
| ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝐷 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) |
| |
| 13-Oct-2025 | tpfidceq 7060 |
A triple is finite if it consists of elements of a class with decidable
equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐷)
& ⊢ (𝜑 → 𝐵 ∈ 𝐷)
& ⊢ (𝜑 → 𝐶 ∈ 𝐷)
& ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
| |
| 13-Oct-2025 | prfidceq 7058 |
A pair is finite if it consists of elements of a class with decidable
equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝐶)
& ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| |
| 13-Oct-2025 | dcun 3581 |
The union of two decidable classes is decidable. (Contributed by Jim
Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.)
|
| ⊢ (𝜑 → DECID 𝐶 ∈ 𝐴)
& ⊢ (𝜑 → DECID 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| |
| 9-Oct-2025 | dvdsfi 12727 |
A natural number has finitely many divisors. (Contributed by Jim
Kingdon, 9-Oct-2025.)
|
| ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| |
| 7-Oct-2025 | df-mplcoe 14593 |
Define the subalgebra of the power series algebra generated by the
variables; this is the polynomial algebra (the set of power series with
finite degree).
The index set (which has an element for each variable) is 𝑖, the
coefficients are in ring 𝑟, and for each variable there is a
"degree" such that the coefficient is zero for a term where
the powers
are all greater than those degrees. (Degree is in quotes because there
is no guarantee that coefficients below that degree are nonzero, as we
do not assume decidable equality for 𝑟). (Contributed by Mario
Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim
Kingdon, 7-Oct-2025.)
|
| ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) |
| |
| 6-Oct-2025 | dvconstss 15337 |
Derivative of a constant function defined on an open set. (Contributed
by Jim Kingdon, 6-Oct-2025.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| |
| 6-Oct-2025 | dcfrompeirce 1472 |
The decidability of a proposition 𝜒 follows from a suitable
instance of Peirce's law. Therefore, if we were to introduce Peirce's
law as a general principle (without the decidability condition in
peircedc 918), then we could prove that every proposition
is decidable,
giving us the classical system of propositional calculus (since Perice's
law is itself classically valid). (Contributed by Adrian Ducourtial,
6-Oct-2025.)
|
| ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) & ⊢ (𝜓 ↔ ⊥) & ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) ⇒ ⊢ DECID 𝜒 |
| |
| 6-Oct-2025 | dcfromcon 1471 |
The decidability of a proposition 𝜒 follows from a suitable
instance of the principle of contraposition. Therefore, if we were to
introduce contraposition as a general principle (without the
decidability condition in condc 857), then we could prove that every
proposition is decidable, giving us the classical system of
propositional calculus (since the principle of contraposition is itself
classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
|
| ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) & ⊢ (𝜓 ↔ ⊤) & ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) ⇒ ⊢ DECID 𝜒 |
| |
| 6-Oct-2025 | dcfromnotnotr 1470 |
The decidability of a proposition 𝜓 follows from a suitable
instance of double negation elimination (DNE). Therefore, if we were to
introduce DNE as a general principle (without the decidability condition
in notnotrdc 847), then we could prove that every proposition
is
decidable, giving us the classical system of propositional calculus
(since DNE itself is classically valid). (Contributed by Adrian
Ducourtial, 6-Oct-2025.)
|
| ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) & ⊢ (¬ ¬
𝜑 → 𝜑) ⇒ ⊢ DECID 𝜓 |
| |
| 3-Oct-2025 | dvidre 15336 |
Real derivative of the identity function. (Contributed by Jim Kingdon,
3-Oct-2025.)
|
| ⊢ (ℝ D ( I ↾ ℝ)) = (ℝ
× {1}) |
| |
| 3-Oct-2025 | dvconstre 15335 |
Real derivative of a constant function. (Contributed by Jim Kingdon,
3-Oct-2025.)
|
| ⊢ (𝐴 ∈ ℂ → (ℝ D (ℝ
× {𝐴})) = (ℝ
× {0})) |
| |
| 3-Oct-2025 | dvidsslem 15332 |
Lemma for dvconstss 15337. Analogue of dvidlemap 15330 where 𝐹 is defined
on an open subset of the real or complex numbers. (Contributed by Jim
Kingdon, 3-Oct-2025.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)
& ⊢ 𝐵 ∈ ℂ
⇒ ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵})) |
| |
| 3-Oct-2025 | dvidrelem 15331 |
Lemma for dvidre 15336 and dvconstre 15335. Analogue of dvidlemap 15330 for real
numbers rather than complex numbers. (Contributed by Jim Kingdon,
3-Oct-2025.)
|
| ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)
& ⊢ 𝐵 ∈ ℂ
⇒ ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵})) |
| |
| 28-Sep-2025 | metuex 14484 |
Applying metUnif yields a set. (Contributed by Jim
Kingdon,
28-Sep-2025.)
|
| ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| |
| 28-Sep-2025 | cndsex 14482 |
The standard distance function on the complex numbers is a set.
(Contributed by Jim Kingdon, 28-Sep-2025.)
|
| ⊢ (abs ∘ − ) ∈
V |
| |
| 25-Sep-2025 | cntopex 14483 |
The standard topology on the complex numbers is a set. (Contributed by
Jim Kingdon, 25-Sep-2025.)
|
| ⊢ (MetOpen‘(abs ∘ − ))
∈ V |
| |
| 24-Sep-2025 | mopnset 14481 |
Getting a set by applying MetOpen. (Contributed by Jim
Kingdon,
24-Sep-2025.)
|
| ⊢ (𝐷 ∈ 𝑉 → (MetOpen‘𝐷) ∈ V) |
| |
| 24-Sep-2025 | blfn 14480 |
The ball function has universal domain. (Contributed by Jim Kingdon,
24-Sep-2025.)
|
| ⊢ ball Fn V |
| |
| 23-Sep-2025 | elfzoext 10365 |
Membership of an integer in an extended open range of integers, extension
added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened
by AV, 23-Sep-2025.)
|
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
| |
| 22-Sep-2025 | plycjlemc 15399 |
Lemma for plycj 15400. (Contributed by Mario Carneiro,
24-Jul-2014.)
(Revised by Jim Kingdon, 22-Sep-2025.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
| |
| 20-Sep-2025 | plycolemc 15397 |
Lemma for plyco 15398. The result expressed as a sum, with a
degree and
coefficients for 𝐹 specified as hypotheses.
(Contributed by Jim
Kingdon, 20-Sep-2025.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| 18-Sep-2025 | elfzoextl 10364 |
Membership of an integer in an extended open range of integers, extension
added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by
replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.)
|
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) |
| |
| 16-Sep-2025 | lgsquadlemofi 15720 |
Lemma for lgsquad 15724. There are finitely many members of 𝑆 with
odd
first part. (Contributed by Jim Kingdon, 16-Sep-2025.)
|
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄)
& ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)} ∈
Fin) |
| |
| 16-Sep-2025 | lgsquadlemsfi 15719 |
Lemma for lgsquad 15724. 𝑆 is finite. (Contributed by Jim
Kingdon,
16-Sep-2025.)
|
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄)
& ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) |
| |
| 16-Sep-2025 | opabfi 7068 |
Finiteness of an ordered pair abstraction which is a decidable subset of
finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
|
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 DECID 𝜓) ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) |
| |
| 13-Sep-2025 | uchoice 6253 |
Principle of unique choice. This is also called non-choice. The name
choice results in its similarity to something like acfun 7357 (with the key
difference being the change of ∃ to ∃!) but unique choice in
fact follows from the axiom of collection and our other axioms. This is
somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is
better described by the paragraph at the end of Section 3.9 which starts
"A similar issue arises in set-theoretic mathematics".
(Contributed by
Jim Kingdon, 13-Sep-2025.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) |
| |
| 11-Sep-2025 | expghmap 14536 |
Exponentiation is a group homomorphism from addition to multiplication.
(Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV,
10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
|
| ⊢ 𝑀 =
(mulGrp‘ℂfld)
& ⊢ 𝑈 = (𝑀 ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom
𝑈)) |
| |
| 11-Sep-2025 | cnfldui 14518 |
The invertible complex numbers are exactly those apart from zero. This
is recapb 8786 but expressed in terms of ℂfld. (Contributed by Jim
Kingdon, 11-Sep-2025.)
|
| ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} =
(Unit‘ℂfld) |
| |
| 9-Sep-2025 | gsumfzfsumlemm 14516 |
Lemma for gsumfzfsum 14517. The case where the sum is inhabited.
(Contributed by Jim Kingdon, 9-Sep-2025.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| |
| 9-Sep-2025 | gsumfzfsumlem0 14515 |
Lemma for gsumfzfsum 14517. The case where the sum is empty.
(Contributed
by Jim Kingdon, 9-Sep-2025.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| |
| 9-Sep-2025 | gsumfzmhm2 13847 |
Apply a group homomorphism to a group sum, mapping version with implicit
substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by
AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵)
& ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷)
& ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| |
| 8-Sep-2025 | gsumfzmhm 13846 |
Apply a monoid homomorphism to a group sum. (Contributed by Mario
Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim
Kingdon, 8-Sep-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| |
| 8-Sep-2025 | 5ndvds6 12412 |
5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
|
| ⊢ ¬ 5 ∥ 6 |
| |
| 8-Sep-2025 | 5ndvds3 12411 |
5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
|
| ⊢ ¬ 5 ∥ 3 |
| |
| 6-Sep-2025 | gsumfzconst 13844 |
Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.)
(Revised by Jim Kingdon, 6-Sep-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)) |
| |
| 31-Aug-2025 | gsumfzmptfidmadd 13842 |
The sum of two group sums expressed as mappings with finite domain.
(Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon,
31-Aug-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵)
& ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
& ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| |
| 30-Aug-2025 | gsumfzsubmcl 13841 |
Closure of a group sum in a submonoid. (Contributed by Mario Carneiro,
10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon,
30-Aug-2025.)
|
| ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝑆) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
| |
| 30-Aug-2025 | seqm1g 10663 |
Value of the sequence builder function at a successor. (Contributed by
Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → + ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
| |
| 29-Aug-2025 | seqf1og 10710 |
Rearrange a sum via an arbitrary bijection on (𝑀...𝑁).
(Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon,
29-Aug-2025.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆)
& ⊢ (𝜑 → + ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| |
| 25-Aug-2025 | irrmulap 9811 |
The product of an irrational with a nonzero rational is irrational. By
irrational we mean apart from any rational number. For a similar
theorem with not rational in place of irrational, see irrmul 9810.
(Contributed by Jim Kingdon, 25-Aug-2025.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞)
& ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑄 ∈ ℚ)
⇒ ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |