| 
       | 
    Intuitionistic Logic Explorer Most Recent Proofs  | 
    |
| Mirrors > Home > ILE Home > Th. List > Recent | MPE Most Recent Other > MM 100 | |
See the MPE Most Recent Proofs page for news and some useful links.
| Color key: | 
| Date | Label | Description | 
|---|---|---|
| Theorem | ||
| 28-Oct-2025 | nn0maxcl 11390 | The maximum of two nonnegative integers is a nonnegative integer. (Contributed by Jim Kingdon, 28-Oct-2025.) | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℕ0) | ||
| 28-Oct-2025 | qdcle 10336 | Rational ≤ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.) | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 ≤ 𝐵) | ||
| 17-Oct-2025 | plycoeid3 14993 | Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.) | 
| ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝐷 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) | ||
| 13-Oct-2025 | tpfidceq 6991 | A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) | 
| ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) | ||
| 13-Oct-2025 | prfidceq 6989 | A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) | 
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) | ||
| 13-Oct-2025 | dcun 3560 | The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.) | 
| ⊢ (𝜑 → DECID 𝐶 ∈ 𝐴) & ⊢ (𝜑 → DECID 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) | ||
| 9-Oct-2025 | dvdsfi 12407 | A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.) | 
| ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) | ||
| 6-Oct-2025 | dvconstss 14934 | Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.) | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) | ||
| 6-Oct-2025 | dcfrompeirce 1460 | The decidability of a proposition 𝜒 follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 915), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) | 
| ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) & ⊢ (𝜓 ↔ ⊥) & ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) ⇒ ⊢ DECID 𝜒 | ||
| 6-Oct-2025 | dcfromcon 1459 | The decidability of a proposition 𝜒 follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 854), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) | 
| ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) & ⊢ (𝜓 ↔ ⊤) & ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) ⇒ ⊢ DECID 𝜒 | ||
| 6-Oct-2025 | dcfromnotnotr 1458 | The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 844), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) | 
| ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) & ⊢ (¬ ¬ 𝜑 → 𝜑) ⇒ ⊢ DECID 𝜓 | ||
| 3-Oct-2025 | dvidre 14933 | Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.) | 
| ⊢ (ℝ D ( I ↾ ℝ)) = (ℝ × {1}) | ||
| 3-Oct-2025 | dvconstre 14932 | Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.) | 
| ⊢ (𝐴 ∈ ℂ → (ℝ D (ℝ × {𝐴})) = (ℝ × {0})) | ||
| 3-Oct-2025 | dvidsslem 14929 | Lemma for dvconstss 14934. Analogue of dvidlemap 14927 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.) | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵})) | ||
| 3-Oct-2025 | dvidrelem 14928 | Lemma for dvidre 14933 and dvconstre 14932. Analogue of dvidlemap 14927 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.) | 
| ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵})) | ||
| 28-Sep-2025 | metuex 14111 | Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) | 
| ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) | ||
| 28-Sep-2025 | cndsex 14109 | The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) | 
| ⊢ (abs ∘ − ) ∈ V | ||
| 25-Sep-2025 | cntopex 14110 | The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.) | 
| ⊢ (MetOpen‘(abs ∘ − )) ∈ V | ||
| 24-Sep-2025 | mopnset 14108 | Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.) | 
| ⊢ (𝐷 ∈ 𝑉 → (MetOpen‘𝐷) ∈ V) | ||
| 24-Sep-2025 | blfn 14107 | The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.) | 
| ⊢ ball Fn V | ||
| 22-Sep-2025 | plycjlemc 14996 | Lemma for plycj 14997. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.) | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) | ||
| 20-Sep-2025 | plycolemc 14994 | Lemma for plyco 14995. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.) | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) | ||
| 16-Sep-2025 | lgsquadlemofi 15317 | Lemma for lgsquad 15321. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.) | 
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)} ∈ Fin) | ||
| 16-Sep-2025 | lgsquadlemsfi 15316 | Lemma for lgsquad 15321. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.) | 
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
| 16-Sep-2025 | opabfi 6999 | Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.) | 
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 DECID 𝜓) ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
| 13-Sep-2025 | uchoice 6195 | Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7274 (with the key difference being the change of ∃ to ∃!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) | ||
| 11-Sep-2025 | expghmap 14163 | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.) | 
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) | ||
| 11-Sep-2025 | cnfldui 14145 | The invertible complex numbers are exactly those apart from zero. This is recapb 8698 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) | 
| ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) | ||
| 9-Sep-2025 | gsumfzfsumlemm 14143 | Lemma for gsumfzfsum 14144. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.) | 
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
| 9-Sep-2025 | gsumfzfsumlem0 14142 | Lemma for gsumfzfsum 14144. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.) | 
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
| 9-Sep-2025 | gsumfzmhm2 13474 | Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) & ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) & ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) | ||
| 8-Sep-2025 | gsumfzmhm 13473 | Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) | ||
| 8-Sep-2025 | 5ndvds6 12100 | 5 does not divide 6. (Contributed by AV, 8-Sep-2025.) | 
| ⊢ ¬ 5 ∥ 6 | ||
| 8-Sep-2025 | 5ndvds3 12099 | 5 does not divide 3. (Contributed by AV, 8-Sep-2025.) | 
| ⊢ ¬ 5 ∥ 3 | ||
| 6-Sep-2025 | gsumfzconst 13471 | Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)) | ||
| 31-Aug-2025 | gsumfzmptfidmadd 13469 | The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| 30-Aug-2025 | gsumfzsubmcl 13468 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.) | 
| ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝑆) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| 30-Aug-2025 | seqm1g 10566 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.) | 
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
| 29-Aug-2025 | seqf1og 10613 | Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.) | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
| 25-Aug-2025 | irrmulap 9722 | The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9721. (Contributed by Jim Kingdon, 25-Aug-2025.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑄 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) | ||
| 19-Aug-2025 | seqp1g 10558 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) | 
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹 ∈ 𝑉 ∧ + ∈ 𝑊) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
| 19-Aug-2025 | seq1g 10555 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ∧ + ∈ 𝑊) → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| 18-Aug-2025 | iswrdiz 10942 | A zero-based sequence is a word. In iswrdinn0 10940 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.) | 
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) | ||
| 16-Aug-2025 | gsumfzcl 13131 | Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| 16-Aug-2025 | iswrdinn0 10940 | A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.) | 
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | ||
| 15-Aug-2025 | gsumfzz 13127 | Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.) | 
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 ) | ||
| 14-Aug-2025 | gsumfzval 13034 | An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))) | ||
| 13-Aug-2025 | znidom 14213 | The ℤ/nℤ structure is an integral domain when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℙ → 𝑌 ∈ IDomn) | ||
| 12-Aug-2025 | rrgmex 13817 | A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.) | 
| ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) | ||
| 10-Aug-2025 | gausslemma2dlem1cl 15300 | Lemma for gausslemma2dlem1 15302. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.) | 
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) ⇒ ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) | ||
| 9-Aug-2025 | gausslemma2dlem1f1o 15301 | Lemma for gausslemma2dlem1 15302. (Contributed by Jim Kingdon, 9-Aug-2025.) | 
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | ||
| 7-Aug-2025 | qdclt 10335 | Rational < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.) | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 < 𝐵) | ||
| 22-Jul-2025 | ivthdich 14889 | 
The intermediate value theorem implies real number dichotomy.  Because
       real number dichotomy (also known as analytic LLPO) is a constructive
       taboo, this means we will be unable to prove the intermediate value
       theorem as stated here (although versions with additional conditions,
       such as ivthinc 14879 for strictly monotonic functions, can be
proved).
 The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number 𝑧. We want to show that 𝑧 ≤ 0 ∨ 0 ≤ 𝑧. Because of hovercncf 14882, hovera 14883, and hoverb 14884, we are able to apply the intermediate value theorem to get a value 𝑐 such that the hover function at 𝑐 equals 𝑧. By axltwlin 8094, 𝑐 < 1 or 0 < 𝑐, and that leads to 𝑧 ≤ 0 by hoverlt1 14885 or 0 ≤ 𝑧 by hovergt0 14886. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)  | 
| ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | ||
| 22-Jul-2025 | dich0 14888 | Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.) | 
| ⊢ (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | ||
| 22-Jul-2025 | ivthdichlem 14887 | Lemma for ivthdich 14889. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.) | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) & ⊢ (𝜑 → 𝑍 ∈ ℝ) & ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) ⇒ ⊢ (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) | ||
| 22-Jul-2025 | hovergt0 14886 | The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.) | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ (𝐹‘𝐶)) | ||
| 22-Jul-2025 | hoverlt1 14885 | The hover function evaluated at a point less than one. (Contributed by Jim Kingdon, 22-Jul-2025.) | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ ℝ ∧ 𝐶 < 1) → (𝐹‘𝐶) ≤ 0) | ||
| 21-Jul-2025 | hoverb 14884 | A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) | ||
| 21-Jul-2025 | hovera 14883 | A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) | ||
| 21-Jul-2025 | rexeqtrrdv 2704 | Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) | 
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐵 = 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| 21-Jul-2025 | raleqtrrdv 2703 | Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) | 
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐵 = 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
| 21-Jul-2025 | rexeqtrdv 2702 | Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) | 
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| 21-Jul-2025 | raleqtrdv 2701 | Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) | 
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
| 20-Jul-2025 | hovercncf 14882 | The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.) | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ 𝐹 ∈ (ℝ–cn→ℝ) | ||
| 19-Jul-2025 | mincncf 14852 | The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.) | 
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) | ||
| 18-Jul-2025 | maxcncf 14851 | The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.) | 
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ sup({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) | ||
| 14-Jul-2025 | xnn0nnen 10529 | The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.) | 
| ⊢ ℕ0* ≈ ℕ | ||
| 12-Jul-2025 | nninfninc 7189 | All values beyond a zero in an ℕ∞ sequence are zero. This is another way of stating that elements of ℕ∞ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℕ∞) & ⊢ (𝜑 → 𝑋 ∈ ω) & ⊢ (𝜑 → 𝑌 ∈ ω) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → (𝐴‘𝑋) = ∅) ⇒ ⊢ (𝜑 → (𝐴‘𝑌) = ∅) | ||
| 10-Jul-2025 | nninfctlemfo 12207 | Lemma for nninfct 12208. (Contributed by Jim Kingdon, 10-Jul-2025.) | 
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (ω ∈ Omni → 𝐼:ℕ0*–onto→ℕ∞) | ||
| 8-Jul-2025 | nnnninfen 15665 | Equinumerosity of the natural numbers and ℕ∞ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.) | 
| ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) | ||
| 8-Jul-2025 | nninfct 12208 | The limited principle of omniscience (LPO) implies that ℕ∞ is countable. (Contributed by Jim Kingdon, 8-Jul-2025.) | 
| ⊢ (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→(ℕ∞ ⊔ 1o)) | ||
| 8-Jul-2025 | nninfinf 10535 | ℕ∞ is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.) | 
| ⊢ ω ≼ ℕ∞ | ||
| 7-Jul-2025 | ivthreinc 14881 | Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 14879). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function 𝐹 is continuous on the entire real line, not just (𝐴[,]𝐵) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
| 28-Jun-2025 | fngsum 13031 | Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.) | 
| ⊢ Σg Fn (V × V) | ||
| 28-Jun-2025 | iotaexel 5882 | Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) ∈ V) | ||
| 27-Jun-2025 | df-igsum 12930 | 
Define a finite group sum (also called "iterated sum") of a
structure.
 Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺. 1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. 3. This definition does not handle other cases. (Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)  | 
| ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) | ||
| 20-Jun-2025 | opprnzrbg 13741 | The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 13742. (Contributed by SN, 20-Jun-2025.) | 
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing)) | ||
| 16-Jun-2025 | fnpsr 14221 | The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.) | 
| ⊢ mPwSer Fn (V × V) | ||
| 14-Jun-2025 | basm 12739 | A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) | ||
| 14-Jun-2025 | elfvm 5591 | If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) | 
| ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) | ||
| 6-Jun-2025 | pcxqcl 12481 | The general prime count function is an integer or infinite. (Contributed by Jim Kingdon, 6-Jun-2025.) | 
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → ((𝑃 pCnt 𝑁) ∈ ℤ ∨ (𝑃 pCnt 𝑁) = +∞)) | ||
| 5-Jun-2025 | xqltnle 10357 | "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +∞. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in ℕ0* or ℝ*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.) | 
| ⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| 5-Jun-2025 | ceqsexv2d 2803 | Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) | 
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
| 30-May-2025 | 4sqexercise2 12568 | Exercise which may help in understanding the proof of 4sqlemsdc 12569. (Contributed by Jim Kingdon, 30-May-2025.) | 
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))} ⇒ ⊢ (𝐴 ∈ ℕ0 → DECID 𝐴 ∈ 𝑆) | ||
| 27-May-2025 | iotaexab 5237 | Existence of the ℩ class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.) | 
| ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) | ||
| 25-May-2025 | 4sqlemsdc 12569 | 
Lemma for 4sq 12579.  The property of being the sum of four
squares is
         decidable.
 The proof involves showing that (for a particular 𝐴) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12567 and 4sqexercise2 12568 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)  | 
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (𝐴 ∈ ℕ0 → DECID 𝐴 ∈ 𝑆) | ||
| 25-May-2025 | 4sqexercise1 12567 | Exercise which may help in understanding the proof of 4sqlemsdc 12569. (Contributed by Jim Kingdon, 25-May-2025.) | 
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)} ⇒ ⊢ (𝐴 ∈ ℕ0 → DECID 𝐴 ∈ 𝑆) | ||
| 24-May-2025 | 4sqleminfi 12566 | Lemma for 4sq 12579. 𝐴 ∩ ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) | ||
| 24-May-2025 | 4sqlemffi 12565 | Lemma for 4sq 12579. ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
| 24-May-2025 | 4sqlemafi 12564 | Lemma for 4sq 12579. 𝐴 is finite. (Contributed by Jim Kingdon, 24-May-2025.) | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⇒ ⊢ (𝜑 → 𝐴 ∈ Fin) | ||
| 24-May-2025 | infidc 7000 | The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.) | 
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) | ||
| 19-May-2025 | zrhex 14177 | Set existence for ℤRHom. (Contributed by Jim Kingdon, 19-May-2025.) | 
| ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐿 ∈ V) | ||
| 16-May-2025 | rhmex 13713 | Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.) | 
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 RingHom 𝑆) ∈ V) | ||
| 15-May-2025 | ghmex 13385 | The set of group homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.) | 
| ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) ∈ V) | ||
| 15-May-2025 | mhmex 13094 | The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.) | 
| ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V) | ||
| 14-May-2025 | idomcringd 13834 | An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.) | 
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
| 6-May-2025 | rrgnz 13824 | In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) | 
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) | ||
| 5-May-2025 | rngressid 13510 | A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12749. (Contributed by Jim Kingdon, 5-May-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Rng) | ||
| 5-May-2025 | ablressid 13465 | A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12749. (Contributed by Jim Kingdon, 5-May-2025.) | 
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel → (𝐺 ↾s 𝐵) ∈ Abel) | ||
| 30-Apr-2025 | dvply2g 15002 | The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.) | 
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Copyright terms: Public domain | W3C HTML validation [external] |