Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 20-Sep-2025 at 6:42 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
16-Sep-2025opabfi 6992 Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )   =>    |-  ( ph  ->  S  e.  Fin )
 
13-Sep-2025uchoice 6190 Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7267 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
 f `  x )  /  y ]. ph )
 )
 
11-Sep-2025expghmap 14095 Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
11-Sep-2025cnfldui 14077 The invertible complex numbers are exactly those apart from zero. This is recapb 8690 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
9-Sep-2025gsumfzfsumlemm 14075 Lemma for gsumfzfsum 14076. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzfsumlem0 14074 Lemma for gsumfzfsum 14076. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzmhm2 13414 Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  X  e.  B )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) )  =  E )
 
8-Sep-2025gsumfzmhm 13413 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ( G MndHom  H )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
6-Sep-2025gsumfzconst 13411 Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
31-Aug-2025gsumfzmptfidmadd 13409 The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
30-Aug-2025gsumfzsubmcl 13408 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  S  e.  (SubMnd `  G )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> S )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
30-Aug-2025seqm1g 10545 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
29-Aug-2025seqf1og 10592 Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( G `  x )  e.  C )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
25-Aug-2025irrmulap 9713 The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9712. (Contributed by Jim Kingdon, 25-Aug-2025.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A. q  e.  QQ  A #  q )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  B  =/=  0
 )   &    |-  ( ph  ->  Q  e.  QQ )   =>    |-  ( ph  ->  ( A  x.  B ) #  Q )
 
19-Aug-2025seqp1g 10537 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  F  e.  V  /\  .+  e.  W )  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
19-Aug-2025seq1g 10534 Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V  /\  .+  e.  W ) 
 ->  (  seq M ( 
 .+  ,  F ) `  M )  =  ( F `  M ) )
 
18-Aug-2025iswrdiz 10921 A zero-based sequence is a word. In iswrdinn0 10919 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  W  e. Word  S )
 
16-Aug-2025gsumfzcl 13071 Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  B )
 
16-Aug-2025iswrdinn0 10919 A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  NN0 )  ->  W  e. Word  S )
 
15-Aug-2025gsumfzz 13067 Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  ) )  =  .0.  )
 
14-Aug-2025gsumfzval 12974 An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `
  N ) ) )
 
13-Aug-2025znidom 14145 The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  Prime  ->  Y  e. IDomn )
 
12-Aug-2025rrgmex 13757 A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
 |-  E  =  (RLReg `  R )   =>    |-  ( A  e.  E  ->  R  e.  _V )
 
10-Aug-2025gausslemma2dlem1cl 15175 Lemma for gausslemma2dlem1 15177. Closure of the body of the definition of  R. (Contributed by Jim Kingdon, 10-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  ( ph  ->  A  e.  ( 1 ...
 H ) )   =>    |-  ( ph  ->  if ( ( A  x.  2 )  <  ( P 
 /  2 ) ,  ( A  x.  2
 ) ,  ( P  -  ( A  x.  2 ) ) )  e.  ZZ )
 
9-Aug-2025gausslemma2dlem1f1o 15176 Lemma for gausslemma2dlem1 15177. (Contributed by Jim Kingdon, 9-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   =>    |-  ( ph  ->  R : ( 1 ...
 H ) -1-1-onto-> ( 1 ... H ) )
 
7-Aug-2025qdclt 10315 Rational  < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  <  B )
 
22-Jul-2025ivthdich 14807 The intermediate value theorem implies real number dichotomy. Because real number dichotomy (also known as analytic LLPO) is a constructive taboo, this means we will be unable to prove the intermediate value theorem as stated here (although versions with additional conditions, such as ivthinc 14797 for strictly monotonic functions, can be proved).

The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number  z. We want to show that  z  <_  0  \/  0  <_  z. Because of hovercncf 14800, hovera 14801, and hoverb 14802, we are able to apply the intermediate value theorem to get a value  c such that the hover function at  c equals  z. By axltwlin 8087,  c  <  1 or  0  <  c, and that leads to  z  <_  0 by hoverlt1 14803 or 
0  <_  z by hovergt0 14804. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)

 |-  ( A. f ( f  e.  ( RR
 -cn-> RR )  ->  A. a  e.  RR  A. b  e. 
 RR  ( ( a  <  b  /\  (
 f `  a )  <  0  /\  0  < 
 ( f `  b
 ) )  ->  E. x  e.  RR  ( a  < 
 x  /\  x  <  b 
 /\  ( f `  x )  =  0
 ) ) )  ->  A. r  e.  RR  A. s  e.  RR  (
 r  <_  s  \/  s  <_  r ) )
 
22-Jul-2025dich0 14806 Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  ( A. z  e. 
 RR  ( z  <_ 
 0  \/  0  <_  z )  <->  A. x  e.  RR  A. y  e.  RR  ( x  <_  y  \/  y  <_  x ) )
 
22-Jul-2025ivthdichlem 14805 Lemma for ivthdich 14807. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   &    |-  ( ph  ->  Z  e.  RR )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
 
22-Jul-2025hovergt0 14804 The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  0  <  C )  ->  0  <_  ( F `  C ) )
 
22-Jul-2025hoverlt1 14803 The hover function evaluated at a point less than one. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  C  <  1
 )  ->  ( F `  C )  <_  0
 )
 
21-Jul-2025hoverb 14802 A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  Z  <  ( F `
  ( Z  +  2 ) ) )
 
21-Jul-2025hovera 14801 A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  ( F `  ( Z  -  1 ) )  <  Z )
 
21-Jul-2025rexeqtrrdv 2701 Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
21-Jul-2025raleqtrrdv 2700 Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
21-Jul-2025rexeqtrdv 2699 Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
21-Jul-2025raleqtrdv 2698 Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
20-Jul-2025hovercncf 14800 The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  F  e.  ( RR
 -cn-> RR )
 
19-Jul-2025mincncf 14770 The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X
 -cn-> RR ) )
 
18-Jul-2025maxcncf 14769 The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
 
14-Jul-2025xnn0nnen 10508 The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
 |- NN0*  ~~  NN
 
12-Jul-2025nninfninc 7182 All values beyond a zero in an ℕ sequence are zero. This is another way of stating that elements of ℕ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
 |-  ( ph  ->  A  e. )   &    |-  ( ph  ->  X  e.  om )   &    |-  ( ph  ->  Y  e.  om )   &    |-  ( ph  ->  X  C_  Y )   &    |-  ( ph  ->  ( A `  X )  =  (/) )   =>    |-  ( ph  ->  ( A `  Y )  =  (/) )
 
10-Jul-2025nninfctlemfo 12177 Lemma for nninfct 12178. (Contributed by Jim Kingdon, 10-Jul-2025.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( om  e. Omni  ->  I :NN0* -onto-> )
 
8-Jul-2025nnnninfen 15511 Equinumerosity of the natural numbers and ℕ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |-  ( om  ~~  <->  om  e. Omni )
 
8-Jul-2025nninfct 12178 The limited principle of omniscience (LPO) implies that ℕ is countable. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |-  ( om  e. Omni  ->  E. f  f : om -onto->
 ( 1o ) )
 
8-Jul-2025nninfinf 10514 is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |- 
 om  ~<_
 
7-Jul-2025ivthreinc 14799 Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 14797). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function  F is continuous on the entire real line, not just  ( A [,] B ) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  F  e.  ( RR -cn-> RR ) )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
28-Jun-2025fngsum 12971 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |- 
 gsumg  Fn  ( _V  X.  _V )
 
28-Jun-2025iotaexel 5878 Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |-  ( ( A  e.  V  /\  A. x (
 ph  ->  x  e.  A ) )  ->  ( iota
 x ph )  e.  _V )
 
27-Jun-2025df-igsum 12870 Define a finite group sum (also called "iterated sum") of a structure.

Given  G  gsumg  F where  F : A --> ( Base `  G ), the set of indices is  A and the values are given by  F at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set  A and each demanding different properties of  G.

1. If  A  =  (/) and  G has an identity element, then the sum equals this identity.

2. If  A  =  ( M ... N ) and 
G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e.,  ( ( F `  1 )  +  ( F ` 
2 ) )  +  ( F `  3
), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

 |- 
 gsumg  =  ( w  e.  _V ,  f  e.  _V  |->  ( iota x ( ( dom  f  =  (/)  /\  x  =  ( 0g
 `  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m
 ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f
 ) `  n )
 ) ) ) )
 
20-Jun-2025opprnzrbg 13681 The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 13682. (Contributed by SN, 20-Jun-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  ( R  e. NzRing  <->  O  e. NzRing ) )
 
16-Jun-2025fnpsr 14153 The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
 |- mPwSer  Fn  ( _V  X.  _V )
 
14-Jun-2025basm 12679 A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( A  e.  B  ->  E. j  j  e.  G )
 
14-Jun-2025elfvm 5587 If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
 |-  ( A  e.  ( F `  B )  ->  E. j  j  e.  F )
 
6-Jun-2025pcxqcl 12450 The general prime count function is an integer or infinite. (Contributed by Jim Kingdon, 6-Jun-2025.)
 |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( ( P 
 pCnt  N )  e.  ZZ  \/  ( P  pCnt  N )  = +oo ) )
 
5-Jun-2025xqltnle 10336 "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +oo. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in NN0* or  RR*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
 |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) ) 
 ->  ( A  <  B  <->  -.  B  <_  A )
 )
 
30-May-20254sqexercise2 12537 Exercise which may help in understanding the proof of 4sqlemsdc 12538. (Contributed by Jim Kingdon, 30-May-2025.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) }   =>    |-  ( A  e.  NN0  -> DECID  A  e.  S )
 
27-May-2025iotaexab 5233 Existence of the  iota class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
 |-  ( { x  |  ph
 }  e.  V  ->  (
 iota x ph )  e. 
 _V )
 
25-May-20254sqlemsdc 12538 Lemma for 4sq 12548. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular  A) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12536 and 4sqexercise2 12537 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( A  e.  NN0  -> DECID  A  e.  S )
 
25-May-20254sqexercise1 12536 Exercise which may help in understanding the proof of 4sqlemsdc 12538. (Contributed by Jim Kingdon, 25-May-2025.)
 |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^ 2 ) }   =>    |-  ( A  e.  NN0  -> DECID  A  e.  S )
 
24-May-20254sqleminfi 12535 Lemma for 4sq 12548. 
A  i^i  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  NN )   &    |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^
 2 )  mod  P ) }   &    |-  F  =  ( v  e.  A  |->  ( ( P  -  1
 )  -  v ) )   =>    |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
 
24-May-20254sqlemffi 12534 Lemma for 4sq 12548.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  NN )   &    |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^
 2 )  mod  P ) }   &    |-  F  =  ( v  e.  A  |->  ( ( P  -  1
 )  -  v ) )   =>    |-  ( ph  ->  ran  F  e.  Fin )
 
24-May-20254sqlemafi 12533 Lemma for 4sq 12548. 
A is finite. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  NN )   &    |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^
 2 )  mod  P ) }   =>    |-  ( ph  ->  A  e.  Fin )
 
24-May-2025infidc 6993 The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  x  e.  B )  ->  ( A  i^i  B )  e. 
 Fin )
 
19-May-2025zrhex 14109 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
16-May-2025rhmex 13653 Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RingHom  S )  e.  _V )
 
15-May-2025ghmex 13325 The set of group homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  e.  _V )
 
15-May-2025mhmex 13034 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )
 
14-May-2025idomcringd 13774 An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  CRing )
 
6-May-2025rrgnz 13764 In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
 |-  E  =  (RLReg `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. NzRing  ->  -.  .0.  e.  E )
 
5-May-2025rngressid 13450 A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12689. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
 
5-May-2025ablressid 13405 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12689. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
 
29-Apr-2025rlmscabas 13956 Scalars in the ring module have the same base set. (Contributed by Jim Kingdon, 29-Apr-2025.)
 |-  ( R  e.  X  ->  ( Base `  R )  =  ( Base `  (Scalar `  (ringLMod `  R ) ) ) )
 
29-Apr-2025ressbasid 12688 The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  V  ->  ( Base `  ( Ws  B ) )  =  B )
 
28-Apr-2025lssmex 13851 If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( U  e.  S  ->  W  e.  _V )
 
27-Apr-2025lidlex 13969 Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  (LIdeal `  W )  e.  _V )
 
27-Apr-2025lssex 13850 Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  ( LSubSp `  W )  e.  _V )
 
25-Apr-2025rspex 13970 Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  V  ->  (RSpan `  W )  e.  _V )
 
25-Apr-2025lspex 13891 Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  X  ->  ( LSpan `  W )  e.  _V )
 
25-Apr-2025eqgex 13291 The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
 
25-Apr-2025qusex 12908 Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( R  e.  V  /\  .~  e.  W )  ->  ( R  /.s  .~  )  e.  _V )
 
23-Apr-20251dom1el 15483 If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
 |-  (
 ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
 
22-Apr-2025mulgex 13193 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
 |-  ( G  e.  V  ->  (.g `  G )  e. 
 _V )
 
20-Apr-2025elovmpod 6116 Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6117 in deduction form. (Revised by AV, 20-Apr-2025.)
 |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  D  e.  V )   &    |-  (
 ( a  =  X  /\  b  =  Y )  ->  C  =  D )   =>    |-  ( ph  ->  ( E  e.  ( X O Y )  <->  E  e.  D ) )
 
18-Apr-2025df2idl2 14005 Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( ( x 
 .x.  y )  e.  I  /\  ( y 
 .x.  x )  e.  I ) ) ) )
 
18-Apr-20252idlmex 13997 Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  T  =  (2Ideal `  W )   =>    |-  ( U  e.  T  ->  W  e.  _V )
 
18-Apr-2025dflidl2 13984 Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I
 ) ) )
 
18-Apr-2025lidlmex 13971 Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  I  =  (LIdeal `  W )   =>    |-  ( U  e.  I  ->  W  e.  _V )
 
18-Apr-2025lsslsp 13925 Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.)
 |-  X  =  ( Ws  U )   &    |-  M  =  (
 LSpan `  W )   &    |-  N  =  ( LSpan `  X )   &    |-  L  =  ( LSubSp `  W )   =>    |-  (
 ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  =  ( M `  G ) )
 
16-Apr-2025sraex 13942 Existence of a subring algebra. (Contributed by Jim Kingdon, 16-Apr-2025.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  A  e.  _V )
 
14-Apr-2025grpmgmd 13098 A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
 |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  G  e. Mgm )
 
12-Apr-2025psraddcl 14164 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  R  e. Mgm )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
10-Apr-2025cndcap 15549 Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
 
4-Apr-2025ghmf1 13343 Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0.  ->  x  =  N ) ) )
 
3-Apr-2025quscrng 14029 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  CRing  /\  S  e.  I ) 
 ->  U  e.  CRing )
 
31-Mar-2025mpocnfldmul 14055 The multiplication operation of the field of complex numbers. Version of cnfldmul 14054 using maps-to notation. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  =  ( .r ` fld )
 
31-Mar-2025mpocnfldadd 14053 The addition operation of the field of complex numbers. Version of cnfldadd 14052 using maps-to notation. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
 ) )  =  (
 +g  ` fld )
 
31-Mar-20252idlcpbl 14020 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D ) ) )
 
22-Mar-2025idomringd 13775 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  Ring )
 
22-Mar-2025idomdomd 13773 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e. Domn )
 
21-Mar-2025df2idl2rng 14004 Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  (
 ( x  .x.  y
 )  e.  I  /\  ( y  .x.  x )  e.  I ) ) )
 
21-Mar-2025isridlrng 13978 A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) )
 
21-Mar-2025dflidl2rng 13977 Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I ) )
 
20-Mar-2025ccoslid 12849 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  (comp  = Slot  (comp `  ndx )  /\  (comp `  ndx )  e.  NN )
 
20-Mar-2025homslid 12847 Slot property of  Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e. 
 NN )
 
19-Mar-2025ptex 12875 Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
 |-  ( F  e.  V  ->  ( Xt_ `  F )  e.  _V )
 
18-Mar-2025prdsex 12880 Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
 |-  ( ( S  e.  V  /\  R  e.  W )  ->  ( S X_s R )  e.  _V )
 
16-Mar-2025mpomulf 8009 Multiplication is an operation on complex numbers. Version of ax-mulf 7995 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7970. (Contributed by GG, 16-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) ) : ( CC  X.  CC ) --> CC
 
13-Mar-20252idlss 14010 A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
 |-  B  =  ( Base `  W )   &    |-  I  =  (2Ideal `  W )   =>    |-  ( U  e.  I  ->  U  C_  B )
 
13-Mar-2025imasex 12888 Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
 |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  e.  _V )
 
11-Mar-2025rng2idlsubgsubrng 14016 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (SubRng `  R )
 )
 
11-Mar-2025rng2idlsubrng 14013 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  I  e.  (SubRng `  R ) )
 
11-Mar-2025rnglidlrng 13994 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R ) )  ->  I  e. Rng
 )
 
11-Mar-2025rnglidlmsgrp 13993 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp
 )
 
11-Mar-2025rnglidlmmgm 13992 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm
 )
 
11-Mar-2025imasival 12889 Value of an image structure. The is a lemma for the theorems imasbas 12890, imasplusg 12891, and imasmulr 12892 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  ( ph  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .+  q ) ) >. } )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .X.  q ) ) >. } )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. } )
 
9-Mar-20252idlridld 14003 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  O  =  (oppr `  R )   =>    |-  ( ph  ->  I  e.  (LIdeal `  O )
 )
 
9-Mar-20252idllidld 14002 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   =>    |-  ( ph  ->  I  e.  (LIdeal `  R )
 )
 
9-Mar-2025quseccl 13303 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  B )
 
9-Mar-2025fovcl 6024 Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.)
 |-  F : ( R  X.  S ) --> C   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
 
8-Mar-2025subgex 13246 The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
 |-  ( G  e.  Grp  ->  (SubGrp `  G )  e. 
 _V )
 
7-Mar-2025ringrzd 13542 The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
 
7-Mar-2025ringlzd 13541 The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (  .0.  .x.  X )  =  .0.  )
 
7-Mar-2025qusecsub 13401 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) ) 
 /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S ) )
 
1-Mar-2025quselbasg 13300 Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  U  =  ( G 
 /.s  .~  )   &    |-  B  =  (
 Base `  G )   =>    |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  ( Base `  U ) 
 <-> 
 E. x  e.  B  X  =  [ x ]  .~  ) )
 
28-Feb-2025qusmulrng 14028 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14029. Similar to qusmul2 14025. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
 |- 
 .~  =  ( R ~QG  S )   &    |-  H  =  ( R 
 /.s  .~  )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  H )   =>    |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [ ( X  .x.  Y ) ]  .~  )
 
28-Feb-2025ringressid 13559 A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12689. (Contributed by Jim Kingdon, 28-Feb-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Ring  ->  ( Gs  B )  e.  Ring )
 
28-Feb-2025grpressid 13133 A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12689. (Contributed by Jim Kingdon, 28-Feb-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
 
27-Feb-2025imasringf1 13561 The image of a ring under an injection is a ring. (Contributed by AV, 27-Feb-2025.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Ring )  ->  U  e.  Ring )
 
26-Feb-2025strext 12723 Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  C  e.  ( ZZ>= `  B )
 )   =>    |-  ( ph  ->  F Struct  <. A ,  C >. )
 
25-Feb-2025subrngringnsg 13701 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (NrmSGrp `  R )
 )
 
25-Feb-2025rngansg 13446 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
 |-  ( R  e. Rng  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
 
25-Feb-2025ecqusaddd 13308 Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  ) )
 
24-Feb-2025ecqusaddcl 13309 Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  )  e.  ( Base `  Q ) )
 
24-Feb-2025quseccl0g 13301 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13303 for arbitrary sets  G. (Revised by AV, 24-Feb-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  H  =  ( G 
 /.s  .~  )   &    |-  C  =  (
 Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( G  e.  V  /\  X  e.  C  /\  S  e.  Z )  ->  [ X ]  .~  e.  B )
 
23-Feb-2025ltlenmkv 15560 If  < can be expressed as holding exactly when 
<_ holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 15558). (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  ->  A. x  e.  RR  A. y  e. 
 RR  ( x  =/=  y  ->  x #  y
 ) )
 
23-Feb-2025neap0mkv 15559 The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
 
23-Feb-2025qus2idrng 14021 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14023 analog). (Contributed by AV, 23-Feb-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  U  e. Rng )
 
23-Feb-20252idlcpblrng 14019 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C 
 .x.  D ) ) )
 
23-Feb-2025lringuplu 13692 If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  U  =  (Unit `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  ( X  .+  Y )  e.  U )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U )
 )
 
23-Feb-2025lringnz 13691 A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |- 
 .1.  =  ( 1r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
 
23-Feb-2025lringring 13690 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |-  ( R  e. LRing  ->  R  e.  Ring )
 
23-Feb-2025lringnzr 13689 A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
 |-  ( R  e. LRing  ->  R  e. NzRing )
 
23-Feb-2025islring 13688 The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  U  =  (Unit `  R )   =>    |-  ( R  e. LRing  <->  ( R  e. NzRing  /\ 
 A. x  e.  B  A. y  e.  B  ( ( x  .+  y
 )  =  .1.  ->  ( x  e.  U  \/  y  e.  U )
 ) ) )
 
23-Feb-2025df-lring 13687 A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r )
 ( ( x (
 +g  `  r )
 y )  =  ( 1r `  r ) 
 ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r )
 ) ) }
 
23-Feb-202501eq0ring 13685 If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  .0.  =  .1.  )  ->  B  =  {  .0.  } )
 
23-Feb-2025nzrring 13679 A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
 |-  ( R  e. NzRing  ->  R  e.  Ring )
 
23-Feb-2025qusrng 13454 The quotient structure of a non-unital ring is a non-unital ring (qusring2 13562 analog). (Contributed by AV, 23-Feb-2025.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  (
 ( a  .~  p  /\  b  .~  q ) 
 ->  ( a  .+  b
 )  .~  ( p  .+  q ) ) )   &    |-  ( ph  ->  ( (
 a  .~  p  /\  b  .~  q )  ->  ( a  .x.  b ) 
 .~  ( p  .x.  q ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
23-Feb-2025rngsubdir 13448 Ring multiplication distributes over subtraction. (subdir 8405 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13553. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) ) )
 
23-Feb-2025rngsubdi 13447 Ring multiplication distributes over subtraction. (subdi 8404 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13552. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) ) )
 
22-Feb-2025imasrngf1 13453 The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e. Rng )  ->  U  e. Rng )
 
22-Feb-2025imasrng 13452 The image structure of a non-unital ring is a non-unital ring (imasring 13560 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
22-Feb-2025rngmgpf 13433 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13507 analog). (Contributed by AV, 22-Feb-2025.)
 |-  (mulGrp  |` Rng ) :Rng -->Smgrp
 
22-Feb-2025imasabl 13406 The image structure of an abelian group is an abelian group (imasgrp 13181 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Abel  /\  ( F ` 
 .0.  )  =  ( 0g `  U ) ) )
 
21-Feb-2025dftap2 7311 Tight apartness with the apartness properties from df-pap 7308 expanded. (Contributed by Jim Kingdon, 21-Feb-2025.)
 |-  ( R TAp  A  <->  ( R  C_  ( A  X.  A ) 
 /\  ( A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x ) )  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) 
 /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) ) )
 
20-Feb-2025rng2idlsubg0 14018 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I )
 
20-Feb-2025rng2idlsubgnsg 14017 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )
 
20-Feb-2025rng2idl0 14015 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I
 )
 
20-Feb-2025rng2idlnsg 14014 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R ) )
 
20-Feb-20252idlelbas 14012 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  J  =  ( Rs  I )   &    |-  B  =  (
 Base `  J )   =>    |-  ( ph  ->  ( B  e.  (LIdeal `  R )  /\  B  e.  (LIdeal `  (oppr `  R ) ) ) )
 
20-Feb-20252idlbas 14011 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  J  =  ( Rs  I )   &    |-  B  =  (
 Base `  J )   =>    |-  ( ph  ->  B  =  I )
 
20-Feb-20252idlelb 14001 Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  ( U  e.  T  <->  ( U  e.  I  /\  U  e.  J )
 )
 
20-Feb-2025aprap 13782 The relation given by df-apr 13777 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( R  e. LRing  ->  (#r `  R ) Ap  ( Base `  R ) )
 
20-Feb-2025setscomd 12659 Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( ph  ->  A  e.  Y )   &    |-  ( ph  ->  B  e.  Z )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  D  e.  X )   =>    |-  ( ph  ->  (
 ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
 
20-Feb-2025ifnebibdc 3600 The converse of ifbi 3577 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
 |-  ( (DECID 
 ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B )  <->  ( ph  <->  ps ) ) )
 
20-Feb-2025ifnefals 3599 Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
 |-  ( ( A  =/=  B 
 /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )
 
20-Feb-2025ifnetruedc 3598 Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
 |-  ( (DECID 
 ph  /\  A  =/=  B 
 /\  if ( ph ,  A ,  B )  =  A )  ->  ph )
 
18-Feb-2025rnglidlmcl 13976 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
 |- 
 .0.  =  ( 0g `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  .0.  e.  I
 )  /\  ( X  e.  B  /\  Y  e.  I ) )  ->  ( X  .x.  Y )  e.  I )
 
17-Feb-2025aprcotr 13781 The apartness relation given by df-apr 13777 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  ( X #  Z  \/  Y #  Z ) ) )
 
17-Feb-2025aprsym 13780 The apartness relation given by df-apr 13777 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  Y #  X ) )
 
17-Feb-2025aprval 13778 Expand Definition df-apr 13777. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  .-  =  ( -g `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  R  e.  Ring
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U ) )
 
17-Feb-2025subrngpropd 13712 If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L ) )
 
17-Feb-2025rngm2neg 13445 Double negation of a product in a non-unital ring (mul2neg 8417 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13551. (Revised by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  ( N `  Y ) )  =  ( X  .x.  Y ) )
 
17-Feb-2025rngmneg2 13444 Negation of a product in a non-unital ring (mulneg2 8415 analog). In contrast to ringmneg2 13550, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( N `  Y ) )  =  ( N `  ( X  .x.  Y ) ) )
 
17-Feb-2025rngmneg1 13443 Negation of a product in a non-unital ring (mulneg1 8414 analog). In contrast to ringmneg1 13549, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  Y )  =  ( N `  ( X  .x.  Y ) ) )
 
16-Feb-2025aprirr 13779 The apartness relation given by df-apr 13777 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  ( 1r `  R )  =/=  ( 0g `  R ) )   =>    |-  ( ph  ->  -.  X #  X )
 
16-Feb-2025rngrz 13442 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13540. (Revised by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
16-Feb-2025rng0cl 13439 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Rng  ->  .0.  e.  B )
 
16-Feb-2025rngacl 13438 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
16-Feb-2025rnggrp 13434 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
 |-  ( R  e. Rng  ->  R  e.  Grp )
 
16-Feb-2025aptap 8669 Complex apartness (as defined at df-ap 8601) is a tight apartness (as defined at df-tap 7310). (Contributed by Jim Kingdon, 16-Feb-2025.)
 |- # TAp  CC
 
15-Feb-2025subsubrng2 13711 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  (SubRng `  S )  =  ( (SubRng `  R )  i^i  ~P A ) )
 
15-Feb-2025subsubrng 13710 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  ( B  e.  (SubRng `  S ) 
 <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
 
15-Feb-2025subrngin 13709 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  R ) )  ->  ( A  i^i  B )  e.  (SubRng `  R )
 )
 
15-Feb-2025subrngintm 13708 The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
 
15-Feb-2025opprsubrngg 13707 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O )
 )
 
15-Feb-2025issubrng2 13706 Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) ) )
 
15-Feb-2025opprrngbg 13574 A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13573. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng ) )
 
15-Feb-2025opprrng 13573 An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e. Rng  ->  O  e. Rng )
 
15-Feb-2025rngpropd 13451 If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
 
15-Feb-2025sgrppropd 12996 If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  ( ph  ->  B  =  (
 Base `  K ) )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Smgrp  <->  L  e. Smgrp ) )
 
15-Feb-2025sgrpcl 12992 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
15-Feb-2025tapeq2 7313 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.)
 |-  ( A  =  B  ->  ( R TAp  A  <->  R TAp  B )
 )
 
14-Feb-2025subrngmcl 13705 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13729. (Revised by AV, 14-Feb-2025.)
 |- 
 .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
 
14-Feb-2025subrngacl 13704 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
 |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .+  Y )  e.  A )
 
14-Feb-2025subrng0 13703 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  .0.  =  ( 0g `  S ) )
 
14-Feb-2025subrngbas 13702 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  =  ( Base `  S )
 )
 
14-Feb-2025subrngsubg 13700 A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (SubGrp `  R )
 )
 
14-Feb-2025subrngrcl 13699 Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  R  e. Rng )
 
14-Feb-2025subrngrng 13698 A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  S  e. Rng )
 
14-Feb-2025subrngid 13697 Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( R  e. Rng  ->  B  e.  (SubRng `  R ) )
 
14-Feb-2025subrngss 13696 A subring is a subset. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  C_  B )
 
14-Feb-2025issubrng 13695 The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRng `  R )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
 
14-Feb-2025df-subrng 13694 Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.)
 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s
 )  e. Rng } )
 
14-Feb-2025isrngd 13449 Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .x.  =  ( .r `  R ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .x.  y
 )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .x.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   =>    |-  ( ph  ->  R  e. Rng )
 
14-Feb-2025rngdi 13436 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
14-Feb-2025exmidmotap 7321 The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID  <->  A. x E* r  r TAp 
 x )
 
14-Feb-2025exmidapne 7320 Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID 
 ->  ( R TAp  A  <->  R  =  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } )
 )
 
14-Feb-2025df-pap 7308 Apartness predicate. A relation  R is an apartness if it is irreflexive, symmetric, and cotransitive. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  ( R Ap  A  <->  ( ( R 
 C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) ) ) )
 
13-Feb-20252idl1 14009 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
 |-  I  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  I )
 
13-Feb-20252idl0 14008 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
 |-  I  =  (2Ideal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  I
 )
 
13-Feb-2025ridl1 14007 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   =>    |-  ( R  e.  Ring 
 ->  B  e.  U )
 
13-Feb-2025ridl0 14006 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
 
13-Feb-2025isridl 14000 A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) ) )
 
13-Feb-2025df-apr 13777 The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13782. (Contributed by Jim Kingdon, 13-Feb-2025.)
 |- #r  =  ( w  e.  _V  |->  {
 <. x ,  y >.  |  ( ( x  e.  ( Base `  w )  /\  y  e.  ( Base `  w ) ) 
 /\  ( x (
 -g `  w )
 y )  e.  (Unit `  w ) ) }
 )
 
13-Feb-2025rngass 13435 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) ) )
 
13-Feb-2025issgrpd 12995 Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  G  e. Smgrp )
 
8-Feb-20252oneel 7316  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |- 
 <. (/) ,  1o >.  e. 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }
 
8-Feb-2025tapeq1 7312 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |-  ( R  =  S  ->  ( R TAp  A  <->  S TAp  A )
 )
 
7-Feb-2025resrhm2b 13745 Restriction of the codomain of a (ring) homomorphism. resghm2b 13332 analog. (Contributed by SN, 7-Feb-2025.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubRing `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
 
6-Feb-2025zzlesq 10779 An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025.)
 |-  ( N  e.  ZZ  ->  N  <_  ( N ^ 2 ) )
 
6-Feb-20252omotap 7319 If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( E* r  r TAp 
 2o  -> EXMID
 )
 
6-Feb-20252omotaplemst 7318 Lemma for 2omotap 7319. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( ( E* r  r TAp  2o  /\  -.  -.  ph )  ->  ph )
 
6-Feb-20252omotaplemap 7317 Lemma for 2omotap 7319. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( -.  -.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
 ) ) } TAp  2o )
 
6-Feb-20252onetap 7315 Negated equality is a tight apartness on  2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |- 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) } TAp  2o
 
5-Feb-2025netap 7314 Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } TAp  A )
 
5-Feb-2025df-tap 7310 Tight apartness predicate. A relation  R is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) )
 
1-Feb-2025mulgnn0cld 13213 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13208. (Contributed by SN, 1-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
31-Jan-20250subg 13269 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G ) )
 
29-Jan-2025grprinvd 13128 The right inverse of a group element. Deduction associated with grprinv 13123. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .+  ( N `
  X ) )  =  .0.  )
 
29-Jan-2025grplinvd 13127 The left inverse of a group element. Deduction associated with grplinv 13122. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( ( N `  X )  .+  X )  =  .0.  )
 
29-Jan-2025grpinvcld 13121 A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N `  X )  e.  B )
 
29-Jan-2025grpridd 13106 The identity element of a group is a right identity. Deduction associated with grprid 13104. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .+  .0.  )  =  X )
 
29-Jan-2025grplidd 13105 The identity element of a group is a left identity. Deduction associated with grplid 13103. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (  .0.  .+  X )  =  X )
 
29-Jan-2025grpassd 13084 A group operation is associative. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
28-Jan-2025dvdsrex 13594 Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
 |-  ( R  e. SRing  ->  (
 ||r `  R )  e.  _V )
 
24-Jan-2025reldvdsrsrg 13588 The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
 |-  ( R  e. SRing  ->  Rel  ( ||r
 `  R ) )
 
18-Jan-2025rerecapb 8862 A real number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 18-Jan-2025.)
 |-  ( A  e.  RR  ->  ( A #  0  <->  E. x  e.  RR  ( A  x.  x )  =  1 )
 )
 
18-Jan-2025recapb 8690 A complex number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies), generalized from real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  E. x  e.  CC  ( A  x.  x )  =  1 )
 )
 
17-Jan-2025ressval3d 12690 Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
 |-  R  =  ( Ss  A )   &    |-  B  =  (
 Base `  S )   &    |-  E  =  ( Base `  ndx )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  E  e.  dom  S )   &    |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
 
17-Jan-2025strressid 12689 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
 |-  ( ph  ->  B  =  ( Base `  W )
 )   &    |-  ( ph  ->  W Struct  <. M ,  N >. )   &    |-  ( ph  ->  Fun  W )   &    |-  ( ph  ->  ( Base ` 
 ndx )  e.  dom  W )   =>    |-  ( ph  ->  ( Ws  B )  =  W )
 
16-Jan-2025ressex 12683 Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
 |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  e.  _V )
 
16-Jan-2025ressvalsets 12682 Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
 |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base ` 
 ndx ) ,  ( A  i^i  ( Base `  W ) ) >. ) )
 
12-Jan-2025isrim 13665 An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.)
 |-  B  =  ( Base `  R )   &    |-  C  =  (
 Base `  S )   =>    |-  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C ) )
 
10-Jan-2025rimrhm 13667 A ring isomorphism is a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.)
 |-  ( F  e.  ( R RingIso  S )  ->  F  e.  ( R RingHom  S )
 )
 
10-Jan-2025isrim0 13657 A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
 |-  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
 
10-Jan-2025opprex 13569 Existence of the opposite ring. If you know that  R is a ring, see opprring 13575. (Contributed by Jim Kingdon, 10-Jan-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  O  e.  _V )
 
10-Jan-2025mgpex 13421 Existence of the multiplication group. If  R is known to be a semiring, see srgmgp 13464. (Contributed by Jim Kingdon, 10-Jan-2025.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  V  ->  M  e.  _V )
 
5-Jan-2025imbibi 252 The antecedent of one side of a biconditional can be moved out of the biconditional to become the antecedent of the remaining biconditional. (Contributed by BJ, 1-Jan-2025.) (Proof shortened by Wolf Lammen, 5-Jan-2025.)
 |-  ( ( ( ph  ->  ps )  <->  ch )  ->  ( ph  ->  ( ps  <->  ch ) ) )
 
1-Jan-2025snss 3753 The singleton of an element of a class is a subset of the class (inference form of snssg 3752). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  C_  B )
 
1-Jan-2025snssg 3752 The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.)
 |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
 
1-Jan-2025snssb 3751 Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.)
 |-  ( { A }  C_  B  <->  ( A  e.  _V 
 ->  A  e.  B ) )
 
9-Dec-2024nninfwlpoim 7237 Decidable equality for ℕ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  om  e. WOmni )
 
8-Dec-2024nninfwlpoimlemdc 7236 Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
8-Dec-2024nninfwlpoimlemginf 7235 Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
 
8-Dec-2024nninfwlpoimlemg 7234 Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  G  e. )
 
7-Dec-2024nninfwlpor 7233 The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
 
7-Dec-2024nninfwlporlem 7232 Lemma for nninfwlpor 7233. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   &    |-  ( ph  ->  om  e. WOmni )   =>    |-  ( ph  -> DECID  X  =  Y )
 
6-Dec-2024nninfwlporlemd 7231 Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   =>    |-  ( ph  ->  ( X  =  Y  <->  D  =  (
 i  e.  om  |->  1o ) ) )
 
3-Dec-2024nninfwlpo 7238 Decidability of equality for ℕ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
 
3-Dec-2024nninfdcinf 7230 The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( ph  ->  om  e. WOmni )   &    |-  ( ph  ->  N  e. )   =>    |-  ( ph  -> DECID  N  =  ( i  e.  om  |->  1o ) )
 
28-Nov-2024basmexd 12678 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  G  e.  _V )
 
22-Nov-2024eliotaeu 5243 An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
 |-  ( A  e.  ( iota x ph )  ->  E! x ph )
 
22-Nov-2024eliota 5242 An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.)
 |-  ( A  e.  ( iota x ph )  <->  E. y ( A  e.  y  /\  A. x ( ph  <->  x  =  y
 ) ) )
 
18-Nov-2024basmex 12677 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.)
 |-  B  =  ( Base `  G )   =>    |-  ( A  e.  B  ->  G  e.  _V )
 
14-Nov-2024dcand 934 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
 |-  ( ph  -> DECID  ps )   &    |-  ( ph  -> DECID  ch )   =>    |-  ( ph  -> DECID 
 ( ps  /\  ch ) )
 
12-Nov-2024sravscag 13939 The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .s `  A ) )
 
12-Nov-2024srascag 13938 The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )
 
12-Nov-2024slotsdifipndx 12792 The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.)
 |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
 
11-Nov-2024bj-con1st 15243 Contraposition when the antecedent is a negated stable proposition. See con1dc 857. (Contributed by BJ, 11-Nov-2024.)
 |-  (STAB  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps 
 ->  ph ) ) )
 
11-Nov-2024slotsdifdsndx 12838 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( dist `  ndx )  /\  ( le `  ndx )  =/=  ( dist `  ndx ) )
 
11-Nov-2024slotsdifplendx 12827 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( le `  ndx )  /\  (TopSet `  ndx )  =/=  ( le `  ndx ) )
 
11-Nov-2024tsetndxnstarvndx 12811 The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  (TopSet `  ndx )  =/=  ( *r `  ndx )
 
11-Nov-2024ofeqd 6132 Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
 |-  ( ph  ->  R  =  S )   =>    |-  ( ph  ->  oF R  =  oF S )
 
11-Nov-2024const 853 Contraposition when the antecedent is a negated stable proposition. See comment of condc 854. (Contributed by BJ, 18-Nov-2023.) (Proof shortened by BJ, 11-Nov-2024.)
 |-  (STAB 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
10-Nov-2024slotsdifunifndx 12845 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
 |-  ( ( ( +g  ` 
 ndx )  =/=  ( UnifSet
 `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
 
7-Nov-2024ressbasd 12685 Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
 |-  ( ph  ->  R  =  ( Ws  A ) )   &    |-  ( ph  ->  B  =  (
 Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( A  i^i  B )  =  ( Base `  R ) )
 
6-Nov-2024oppraddg 13572 Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
 |-  O  =  (oppr `  R )   &    |- 
 .+  =  ( +g  `  R )   =>    |-  ( R  e.  V  ->  .+  =  ( +g  `  O ) )
 
6-Nov-2024opprbasg 13571 Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
 |-  O  =  (oppr `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  V  ->  B  =  ( Base `  O ) )
 
6-Nov-2024opprsllem 13570 Lemma for opprbasg 13571 and oppraddg 13572. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
 |-  O  =  (oppr `  R )   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( E `  ndx )  =/=  ( .r `  ndx )   =>    |-  ( R  e.  V  ->  ( E `  R )  =  ( E `  O ) )
 
4-Nov-2024lgsfvalg 15121 Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( M  -  1
 )  /  2 )
 )  +  1 ) 
 mod  M )  -  1
 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
 
3-Nov-2024znmul 14130 The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( .r `  U )  =  ( .r `  Y ) )
 
3-Nov-2024znadd 14129 The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
 
3-Nov-2024znbas2 14128 The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( Base `  U )  =  ( Base `  Y )
 )
 
3-Nov-2024znbaslemnn 14127 Lemma for znbas 14132. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  ( le `  ndx )   =>    |-  ( N  e.  NN0  ->  ( E `  U )  =  ( E `  Y ) )
 
3-Nov-2024zlmmulrg 14119 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
3-Nov-2024zlmplusgg 14118 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
3-Nov-2024zlmbasg 14117 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
3-Nov-2024zlmlemg 14116 Lemma for zlmbasg 14117 and zlmplusgg 14118. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
2-Nov-2024zlmsca 14120 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
1-Nov-2024plendxnvscandx 12826 The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( .s `  ndx )
 
1-Nov-2024plendxnscandx 12825 The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  (Scalar `  ndx )
 
1-Nov-2024plendxnmulrndx 12824 The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( .r `  ndx )
 
1-Nov-2024qsqeqor 10721 The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A ^ 2 )  =  ( B ^ 2
 ) 
 <->  ( A  =  B  \/  A  =  -u B ) ) )
 
31-Oct-2024dsndxnmulrndx 12835 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( .r `  ndx )
 
31-Oct-2024tsetndxnmulrndx 12810 The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( .r `  ndx )
 
31-Oct-2024tsetndxnbasendx 12808 The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( Base `  ndx )
 
31-Oct-2024basendxlttsetndx 12807 The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( Base `  ndx )  < 
 (TopSet `  ndx )
 
31-Oct-2024tsetndxnn 12806 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  e. 
 NN
 
30-Oct-2024plendxnbasendx 12822 The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.)
 |-  ( le `  ndx )  =/=  ( Base `  ndx )
 
30-Oct-2024basendxltplendx 12821 The index value of the  Base slot is less than the index value of the  le slot. (Contributed by AV, 30-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( le `  ndx )
 
30-Oct-2024plendxnn 12820 The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
 |-  ( le `  ndx )  e.  NN
 
29-Oct-2024sradsg 13944 Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( dist `  W )  =  ( dist `  A )
 )
 
29-Oct-2024sratsetg 13941 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  (TopSet `  W )  =  (TopSet `  A ) )
 
29-Oct-2024sramulrg 13937 Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .r `  A ) )
 
29-Oct-2024sraaddgg 13936 Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( +g  `  W )  =  ( +g  `  A ) )
 
29-Oct-2024srabaseg 13935 Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( Base `  W )  =  ( Base `  A )
 )
 
29-Oct-2024sralemg 13934 Lemma for srabaseg 13935 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  (Scalar ` 
 ndx )  =/=  ( E `  ndx )   &    |-  ( .s `  ndx )  =/=  ( E `  ndx )   &    |-  ( .i `  ndx )  =/=  ( E `  ndx )   =>    |-  ( ph  ->  ( E `  W )  =  ( E `  A ) )
 
29-Oct-2024dsndxntsetndx 12837 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( dist `  ndx )  =/=  (TopSet `  ndx )
 
29-Oct-2024slotsdnscsi 12836 The slots Scalar,  .s and  .i are different from the slot  dist. (Contributed by AV, 29-Oct-2024.)
 |-  ( ( dist `  ndx )  =/=  (Scalar `  ndx )  /\  ( dist `  ndx )  =/=  ( .s `  ndx )  /\  ( dist ` 
 ndx )  =/=  ( .i `  ndx ) )
 
29-Oct-2024slotstnscsi 12812 The slots Scalar,  .s and  .i are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
 |-  ( (TopSet `  ndx )  =/=  (Scalar `  ndx )  /\  (TopSet `  ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )
 
29-Oct-2024ipndxnmulrndx 12791 The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( .r `  ndx )
 
29-Oct-2024ipndxnplusgndx 12790 The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( +g  `  ndx )
 
29-Oct-2024vscandxnmulrndx 12778 The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( .r `  ndx )
 
29-Oct-2024scandxnmulrndx 12773 The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( .r `  ndx )
 
29-Oct-2024fiubnn 10901 A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.)
 |-  ( ( A  C_  NN  /\  A  e.  Fin )  ->  E. x  e.  NN  A. y  e.  A  y 
 <_  x )
 
29-Oct-2024fiubz 10900 A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.)
 |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. x  e.  ZZ  A. y  e.  A  y 
 <_  x )
 
29-Oct-2024fiubm 10899 Lemma for fiubz 10900 and fiubnn 10901. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B 
 C_  QQ )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  E. x  e.  B  A. y  e.  A  y  <_  x )
 
28-Oct-2024unifndxntsetndx 12844 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  (TopSet `  ndx )
 
28-Oct-2024basendxltunifndx 12842 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( UnifSet `  ndx )
 
28-Oct-2024unifndxnn 12841 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  e. 
 NN
 
28-Oct-2024dsndxnbasendx 12833 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( Base `  ndx )
 
28-Oct-2024basendxltdsndx 12832 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( dist `  ndx )
 
28-Oct-2024dsndxnn 12831 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  e. 
 NN
 
27-Oct-2024bj-nnst 15235 Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 15482 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in  (  ->  ,  -.  ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in  (  ->  ,  <->  ,  -.  )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.)
 |-  -.  -. STAB  ph
 
27-Oct-2024bj-imnimnn 15230 If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 15229 as its last step. (Contributed by BJ, 27-Oct-2024.)
 |-  ( ph  ->  ps )   &    |-  ( -.  ph  ->  ps )   =>    |- 
 -.  -.  ps
 
25-Oct-2024nnwosdc 12176 Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( ( E. x  e.  NN  ph  /\  A. x  e.  NN DECID  ph )  ->  E. x  e.  NN  ( ph  /\  A. y  e.  NN  ( ps  ->  x  <_  y
 ) ) )
 
23-Oct-2024nnwodc 12173 Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.)
 |-  ( ( A  C_  NN  /\  E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
 
22-Oct-2024uzwodc 12174 Well-ordering principle: any inhabited decidable subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) (Revised by Jim Kingdon, 22-Oct-2024.)
 |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  ->  E. j  e.  S  A. k  e.  S  j  <_  k
 )
 
21-Oct-2024nnnotnotr 15482 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 851, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
 |-  -.  -.  ( -.  -.  ph  -> 
 ph )
 
21-Oct-2024unifndxnbasendx 12843 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  ( Base `  ndx )
 
21-Oct-2024ipndxnbasendx 12789 The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( Base `  ndx )
 
21-Oct-2024scandxnbasendx 12771 The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( Base `  ndx )
 
20-Oct-2024isprm5lem 12279 Lemma for isprm5 12280. The interesting direction (showing that one only needs to check prime divisors up to the square root of  P). (Contributed by Jim Kingdon, 20-Oct-2024.)
 |-  ( ph  ->  P  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )   &    |-  ( ph  ->  X  e.  ( 2 ... ( P  -  1
 ) ) )   =>    |-  ( ph  ->  -.  X  ||  P )
 
19-Oct-2024resseqnbasd 12691 The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
 |-  R  =  ( Ws  A )   &    |-  C  =  ( E `  W )   &    |-  ( E  = Slot  ( E `
  ndx )  /\  ( E `  ndx )  e. 
 NN )   &    |-  ( E `  ndx )  =/=  ( Base `  ndx )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  C  =  ( E `  R ) )
 
18-Oct-2024rmodislmod 13847 The right module  R induces a left module  L by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 13785 of a left module, see also islmod 13787. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
 |-  V  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  F  =  (Scalar `  R )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   &    |-  ( R  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( w  .x.  r )  e.  V  /\  ( ( w  .+  x ) 
 .x.  r )  =  ( ( w  .x.  r )  .+  ( x 
 .x.  r ) ) 
 /\  ( w  .x.  ( q  .+^  r ) )  =  ( ( w  .x.  q )  .+  ( w  .x.  r
 ) ) )  /\  ( ( w  .x.  ( q  .X.  r ) )  =  ( ( w  .x.  q )  .x.  r )  /\  ( w  .x.  .1.  )  =  w ) ) )   &    |-  .*  =  ( s  e.  K ,  v  e.  V  |->  ( v  .x.  s ) )   &    |-  L  =  ( R sSet  <. ( .s
 `  ndx ) ,  .*  >.
 )   =>    |-  ( F  e.  CRing  ->  L  e.  LMod )
 
18-Oct-2024mgpress 13427 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
 |-  S  =  ( Rs  A )   &    |-  M  =  (mulGrp `  R )   =>    |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
 
18-Oct-2024dsndxnplusgndx 12834 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024plendxnplusgndx 12823 The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( le `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024tsetndxnplusgndx 12809 The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024vscandxnscandx 12779 The slot for the scalar product is not the slot for the scalar field in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  (Scalar `  ndx )
 
18-Oct-2024vscandxnplusgndx 12777 The slot for the scalar product is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024vscandxnbasendx 12776 The slot for the scalar product is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( Base `  ndx )
 
18-Oct-2024scandxnplusgndx 12772 The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024starvndxnmulrndx 12761 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( .r `  ndx )
 
18-Oct-2024starvndxnplusgndx 12760 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024starvndxnbasendx 12759 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( Base `  ndx )
 
17-Oct-2024basendxltplusgndx 12731 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( +g  `  ndx )
 
17-Oct-2024plusgndxnn 12729 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
 |-  ( +g  `  ndx )  e.  NN
 
17-Oct-2024elnndc 9677 Membership of an integer in  NN is decidable. (Contributed by Jim Kingdon, 17-Oct-2024.)
 |-  ( N  e.  ZZ  -> DECID  N  e.  NN )
 
14-Oct-20242zinfmin 11386 Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> inf ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  A ,  B )
 )
 
14-Oct-2024mingeb 11385 Equivalence of  <_ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <-> inf ( { A ,  B } ,  RR ,  <  )  =  A ) )
 
13-Oct-2024pcxnn0cl 12448 Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  pCnt  N )  e. NN0* )
 
13-Oct-2024xnn0letri 9869 Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( A  <_  B  \/  B  <_  A ) )
 
13-Oct-2024xnn0dcle 9868 Decidability of  <_ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )
 
9-Oct-2024nn0leexp2 10781 Ordering law for exponentiation. (Contributed by Jim Kingdon, 9-Oct-2024.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  NN0 )  /\  1  <  A )  ->  ( M 
 <_  N  <->  ( A ^ M )  <_  ( A ^ N ) ) )
 
8-Oct-2024pclemdc 12426 Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e. 
 ZZ DECID  x  e.  A )
 
8-Oct-2024elnn0dc 9676 Membership of an integer in  NN0 is decidable. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  ( N  e.  ZZ  -> DECID  N  e.  NN0 )
 
7-Oct-2024pclemub 12425 Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
 
7-Oct-2024pclem0 12424 Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  0  e.  A )
 
7-Oct-2024nn0ltexp2 10780 Special case of ltexp2 15074 which we use here because we haven't yet defined df-rpcxp 14994 which is used in the current proof of ltexp2 15074. (Contributed by Jim Kingdon, 7-Oct-2024.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  NN0 )  /\  1  <  A )  ->  ( M  <  N  <->  ( A ^ M )  <  ( A ^ N ) ) )
 
6-Oct-2024suprzcl2dc 12092 The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 7993.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.)
 |-  ( ph  ->  A  C_ 
 ZZ )   &    |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )   &    |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )   &    |-  ( ph  ->  E. x  x  e.  A )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
 
5-Oct-2024zsupssdc 12091 An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 7993.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
 |-  ( ph  ->  A  C_ 
 ZZ )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )   &    |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )   =>    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  B  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
5-Oct-2024suprzubdc 12089 The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
 |-  ( ph  ->  A  C_ 
 ZZ )   &    |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )   &    |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  B 
 <_  sup ( A ,  RR ,  <  ) )
 
1-Oct-2024infex2g 7093 Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
 |-  ( A  e.  C  -> inf ( B ,  A ,  R )  e.  _V )
 
30-Sep-2024unbendc 12611 An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~ 
 NN )
 
30-Sep-2024prmdc 12268 Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.)
 |-  ( N  e.  NN  -> DECID  N  e.  Prime )
 
30-Sep-2024dcfi 7040 Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  A. x  e.  A  ph )
 
29-Sep-2024ssnnct 12604 A decidable subset of  NN is countable. (Contributed by Jim Kingdon, 29-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A )  ->  E. f  f : om -onto-> ( A 1o )
 )
 
29-Sep-2024ssnnctlemct 12603 Lemma for ssnnct 12604. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  1 )   =>    |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A )  ->  E. f  f : om -onto-> ( A 1o )
 )
 
28-Sep-2024nninfdcex 12090 A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  E. y  y  e.  A )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )
 
27-Sep-2024infregelbex 9663 Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( B  <_ inf ( A ,  RR ,  <  )  <->  A. z  e.  A  B  <_  z ) )
 
26-Sep-2024nninfdclemp1 12607 Lemma for nninfdc 12610. Each element of the sequence  F is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   &    |-  ( ph  ->  U  e.  NN )   =>    |-  ( ph  ->  ( F `  U )  < 
 ( F `  ( U  +  1 )
 ) )
 
26-Sep-2024nnminle 12172 The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12171. (Contributed by Jim Kingdon, 26-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  B  e.  A )  -> inf ( A ,  RR ,  <  )  <_  B )
 
25-Sep-2024nninfdclemcl 12605 Lemma for nninfdc 12610. (Contributed by Jim Kingdon, 25-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  P  e.  A )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  ( P ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) Q )  e.  A )
 
24-Sep-2024nninfdclemlt 12608 Lemma for nninfdc 12610. The function from nninfdclemf 12606 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   &    |-  ( ph  ->  U  e.  NN )   &    |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  U  <  V )   =>    |-  ( ph  ->  ( F `  U )  <  ( F `  V ) )
 
23-Sep-2024nninfdc 12610 An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om  ~<_  A )
 
23-Sep-2024nninfdclemf1 12609 Lemma for nninfdc 12610. The function from nninfdclemf 12606 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   =>    |-  ( ph  ->  F : NN -1-1-> A )
 
23-Sep-2024nninfdclemf 12606 Lemma for nninfdc 12610. A function from the natural numbers into  A. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   =>    |-  ( ph  ->  F : NN --> A )
 
23-Sep-2024nnmindc 12171 An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  E. y  y  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
 
19-Sep-2024ssomct 12602 A decidable subset of  om is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
 |-  ( ( A  C_  om 
 /\  A. x  e.  om DECID  x  e.  A )  ->  E. f  f : om -onto-> ( A 1o ) )
 
14-Sep-2024nnpredlt 4656 The predecessor (see nnpredcl 4655) of a nonzero natural number is less than (see df-iord 4397) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
 |-  ( ( A  e.  om 
 /\  A  =/=  (/) )  ->  U. A  e.  A )
 
13-Sep-2024nninfisollemeq 7191 Lemma for nninfisol 7192. The case where  N is a successor and  N and  X are equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =/=  (/) )   &    |-  ( ph  ->  ( X `  U. N )  =  1o )   =>    |-  ( ph  -> DECID 
 ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
13-Sep-2024nninfisollemne 7190 Lemma for nninfisol 7192. A case where  N is a successor and  N and  X are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =/=  (/) )   &    |-  ( ph  ->  ( X `  U. N )  =  (/) )   =>    |-  ( ph  -> DECID  ( i  e.  om  |->  if (
 i  e.  N ,  1o ,  (/) ) )  =  X )
 
13-Sep-2024nninfisollem0 7189 Lemma for nninfisol 7192. The case where  N is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =  (/) )   =>    |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
12-Sep-2024nninfisol 7192 Finite elements of ℕ are isolated. That is, given a natural number and any element of ℕ, it is decidable whether the natural number (when converted to an element of ℕ) is equal to the given element of ℕ. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence  X to decide whether it is equal to  N (in fact, you only need to look at two elements and  N tells you where to look). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)
 |-  ( ( N  e.  om 
 /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
8-Sep-2024relopabv 4786 A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopab 4788. (Contributed by SN, 8-Sep-2024.)
 |- 
 Rel  { <. x ,  y >.  |  ph }
 
7-Sep-2024eulerthlemfi 12366 Lemma for eulerth 12371. The set  S is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   =>    |-  ( ph  ->  S  e.  Fin )
 
7-Sep-2024modqexp 10737 Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A ^ C )  mod  D )  =  ( ( B ^ C )  mod  D ) )
 
5-Sep-2024eulerthlemh 12369 Lemma for eulerth 12371. A permutation of  ( 1 ... ( phi `  N ) ). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 5-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   &    |-  H  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) ) 
 |->  ( ( A  x.  ( F `  y ) )  mod  N ) ) )   =>    |-  ( ph  ->  H : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
 
2-Sep-2024eulerthlemth 12370 Lemma for eulerth 12371. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   =>    |-  ( ph  ->  ( ( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod 
 N ) )
 
2-Sep-2024eulerthlema 12368 Lemma for eulerth 12371. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   =>    |-  ( ph  ->  ( (
 ( A ^ ( phi `  N ) )  x.  prod_ x  e.  (
 1 ... ( phi `  N ) ) ( F `
  x ) ) 
 mod  N )  =  (
 prod_ x  e.  (
 1 ... ( phi `  N ) ) ( ( A  x.  ( F `
  x ) ) 
 mod  N )  mod  N ) )
 
2-Sep-2024eulerthlemrprm 12367 Lemma for eulerth 12371. 
N and  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   =>    |-  ( ph  ->  ( N  gcd  prod_ x  e.  (
 1 ... ( phi `  N ) ) ( F `
  x ) )  =  1 )
 
1-Sep-2024qusmul2 14025 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
 |-  Q  =  ( R 
 /.s 
 ( R ~QG  I ) )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .X. 
 =  ( .r `  Q )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( [ X ] ( R ~QG  I )  .X.  [ Y ] ( R ~QG  I )
 )  =  [ ( X  .x.  Y ) ]
 ( R ~QG  I ) )
 
30-Aug-2024fprodap0f 11779 A finite product of terms apart from zero is apart from zero. A version of fprodap0 11764 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B #  0 )
 
28-Aug-2024fprodrec 11772 The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B )  =  (
 1  /  prod_ k  e.  A  B ) )
 
26-Aug-2024exmidontri2or 7303 Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
26-Aug-2024exmidontri 7299 Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
26-Aug-2024ontri2orexmidim 4604 Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4603. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  -> DECID  ph )
 
26-Aug-2024ontriexmidim 4554 Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4553. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  ph )
 
25-Aug-2024onntri2or 7306 Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
25-Aug-2024onntri3or 7305 Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
 
25-Aug-2024csbcow 3091 Composition law for chained substitutions into a class. Version of csbco 3090 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by GG, 25-Aug-2024.)
 |-  [_ A  /  y ]_ [_ y  /  x ]_ B  =  [_ A  /  x ]_ B
 
25-Aug-2024cbvreuvw 2732 Version of cbvreuv 2728 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
25-Aug-2024cbvrexvw 2731 Version of cbvrexv 2727 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
25-Aug-2024cbvralvw 2730 Version of cbvralv 2726 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
25-Aug-2024cbvabw 2316 Version of cbvab 2317 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  |  ph
 }  =  { y  |  ps }
 
25-Aug-2024nfsbv 1963 If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  z is distinct from  x and  y. Version of nfsb 1962 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on  x ,  y. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |- 
 F/ z ph   =>    |- 
 F/ z [ y  /  x ] ph
 
25-Aug-2024cbvexvw 1932 Change bound variable. See cbvexv 1930 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1459. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
25-Aug-2024cbvalvw 1931 Change bound variable. See cbvalv 1929 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1459. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
25-Aug-2024nfal 1587 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1521. (Revised by GG, 25-Aug-2024.)
 |- 
 F/ x ph   =>    |- 
 F/ x A. y ph
 
24-Aug-2024gcdcomd 12111 The  gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  N )  =  ( N  gcd  M ) )
 
21-Aug-2024dvds2addd 11972 Deduction form of dvds2add 11968. (Contributed by SN, 21-Aug-2024.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  K 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  ( M  +  N ) )
 
17-Aug-2024fprodcl2lem 11748 Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
 
16-Aug-2024if0ab 15297 Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion  |-  if (
ph ,  A ,  (/) )  C_  A and therefore, using elpwg 3609,  |-  ( A  e.  V  ->  if ( ph ,  A ,  (/) )  e.  ~P A
), from which fmelpw1o 15298 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

 |-  if ( ph ,  A ,  (/) )  =  { x  e.  A  |  ph }
 
16-Aug-2024fprodunsn 11747 Multiply in an additional term in a finite product. See also fprodsplitsn 11776 which is the same but with a  F/ k
ph hypothesis in place of the distinct variable condition between  ph and  k. (Contributed by Jim Kingdon, 16-Aug-2024.)
 |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D ) )
 
15-Aug-2024bj-charfundcALT 15301 Alternate proof of bj-charfundc 15300. It was expected to be much shorter since it uses bj-charfun 15299 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )   =>    |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
  x )  =  (/) ) ) )
 
15-Aug-2024bj-charfun 15299 Properties of the characteristic function on the class  X of the class  A. (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )   =>    |-  ( ph  ->  (
 ( F : X --> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X 
 \  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\ 
 A. x  e.  ( X  \  A ) ( F `  x )  =  (/) ) ) )
 
15-Aug-2024fmelpw1o 15298 With a formula  ph one can associate an element of 
~P 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than T. and F., by nndc 852, which translate to  1o and  (/) respectively by iftrue 3562 and iffalse 3565, giving pwtrufal 15488).

As proved in if0ab 15297, the associated element of  ~P 1o is the extension, in  ~P 1o, of the formula  ph. (Contributed by BJ, 15-Aug-2024.)

 |-  if ( ph ,  1o ,  (/) )  e.  ~P 1o
 
15-Aug-2024cnstab 8664 Equality of complex numbers is stable. Stability here means  -.  -.  A  =  B  ->  A  =  B as defined at df-stab 832. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  -> STAB 
 A  =  B )
 
15-Aug-2024subap0d 8663 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   =>    |-  ( ph  ->  ( A  -  B ) #  0 )
 
15-Aug-2024ifexd 4515 Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )
 
15-Aug-2024ifelpwun 4514 Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )
 
15-Aug-2024ifelpwund 4513 Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
 
15-Aug-2024ifelpwung 4512 Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
 
15-Aug-2024ifidss 3572 A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.)
 |- 
 if ( ph ,  A ,  A )  C_  A
 
15-Aug-2024ifssun 3571 A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
 |- 
 if ( ph ,  A ,  B )  C_  ( A  u.  B )
 
12-Aug-2024exmidontriimlem2 7282 Lemma for exmidontriim 7285. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
 
12-Aug-2024exmidontriimlem1 7281 Lemma for exmidontriim 7285. A variation of r19.30dc 2641. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps 
 \/  ch )  /\ EXMID )  ->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps  \/  A. x  e.  A  ch ) )
 
11-Aug-2024nndc 852 Double negation of decidability of a formula. Intuitionistic logic refutes the negation of decidability (but does not prove decidability) of any formula.

This should not trick the reader into thinking that  -.  -. EXMID is provable in intuitionistic logic. Indeed, if we could quantify over formula metavariables, then generalizing nnexmid 851 over  ph would give " |-  A. ph -.  -. DECID  ph", but EXMID is " A. phDECID 
ph", so proving 
-.  -. EXMID would amount to proving " -.  -.  A. phDECID  ph", which is not implied by the above theorem. Indeed, the converse of nnal 1660 does not hold. Since our system does not allow quantification over formula metavariables, we can reproduce this argument by representing formulas as subsets of  ~P 1o, like we do in our definition of EXMID (df-exmid 4224): then, we can prove  A. x  e. 
~P 1o -.  -. DECID  x  =  1o but we cannot prove  -.  -.  A. x  e.  ~P 1oDECID  x  =  1o because the converse of nnral 2484 does not hold.

Actually,  -.  -. EXMID is not provable in intuitionistic logic since intuitionistic logic has models satisfying  -. EXMID and noncontradiction holds (pm3.24 694). (Contributed by BJ, 9-Oct-2019.) Add explanation on non-provability of  -. 
-. EXMID. (Revised by BJ, 11-Aug-2024.)

 |- 
 -.  -. DECID  ph
 
10-Aug-2024exmidontriim 7285 Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  (EXMID 
 ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
10-Aug-2024exmidontriimlem4 7284 Lemma for exmidontriim 7285. The induction step for the induction on  A. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
10-Aug-2024exmidontriimlem3 7283 Lemma for exmidontriim 7285. What we get to do based on induction on both  A and  B. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
10-Aug-2024nnnninf2 7186 Canonical embedding of  suc  om into ℕ. (Contributed by BJ, 10-Aug-2024.)
 |-  ( N  e.  suc  om 
 ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e. )
 
10-Aug-2024infnninf 7183 The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4706 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
 |-  ( i  e.  om  |->  1o )  e.
 
9-Aug-2024ss1o0el1o 6969 Reformulation of ss1o0el1 4226 using  1o instead of 
{ (/) }. (Contributed by BJ, 9-Aug-2024.)
 |-  ( A  C_  1o  ->  ( (/)  e.  A  <->  A  =  1o ) )
 
9-Aug-2024pw1dc0el 6967 Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  ~P  1oDECID  (/)  e.  x )
 
9-Aug-2024ss1o0el1 4226 A subclass of  { (/) } contains the empty set if and only if it equals  { (/) }. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
 |-  ( A  C_  { (/) }  ->  ( (/)  e.  A  <->  A  =  { (/)
 } ) )
 
8-Aug-2024pw1dc1 6970 If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  ~P  1oDECID  x  =  1o )
 
7-Aug-2024pw1fin 6966 Excluded middle is equivalent to the power set of  1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
 |-  (EXMID  <->  ~P 1o  e.  Fin )
 
7-Aug-2024elomssom 4637 A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4638. (Revised by BJ, 7-Aug-2024.)
 |-  ( A  e.  om  ->  A  C_  om )
 
6-Aug-2024bj-charfunbi 15303 In an ambient set  X, if membership in  A is stable, then it is decidable if and only if  A has a characteristic function.

This characterization can be applied to singletons when the set  X has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  A. x  e.  X STAB  x  e.  A )   =>    |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A 
 <-> 
 E. f  e.  ( 2o  ^m  X ) (
 A. x  e.  ( X  i^i  A ) ( f `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( f `
  x )  =  (/) ) ) )
 
6-Aug-2024bj-charfunr 15302 If a class  A has a "weak" characteristic function on a class  X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

 |-  ( ph  ->  E. f  e.  ( om  ^m  X ) (
 A. x  e.  ( X  i^i  A ) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `  x )  =  (/) ) )   =>    |-  ( ph  ->  A. x  e.  X DECID 
 -.  x  e.  A )
 
6-Aug-2024bj-charfundc 15300 Properties of the characteristic function on the class  X of the class  A, provided membership in  A is decidable in  X. (Contributed by BJ, 6-Aug-2024.)
 |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )   =>    |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
  x )  =  (/) ) ) )
 
6-Aug-2024prodssdc 11732 Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>=
 `  M ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
5-Aug-2024fnmptd 15296 The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  F  Fn  A )
 
5-Aug-2024funmptd 15295 The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5291, then prove funmptd 15295 from it, and then prove funmpt 5292 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   =>    |-  ( ph  ->  Fun  F )
 
5-Aug-2024bj-dcfal 15247 The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.)
 |- DECID F.
 
5-Aug-2024bj-dctru 15245 The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.)
 |- DECID T.
 
5-Aug-2024bj-stfal 15234 The false truth value is stable. (Contributed by BJ, 5-Aug-2024.)
 |- STAB F.
 
5-Aug-2024bj-sttru 15232 The true truth value is stable. (Contributed by BJ, 5-Aug-2024.)
 |- STAB T.
 
5-Aug-2024prod1dc 11729 Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
 
5-Aug-20242ssom 6577 The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
 |- 
 2o  C_  om
 
2-Aug-2024onntri52 7304 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
2-Aug-2024onntri24 7302 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
2-Aug-2024onntri45 7301 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
 
2-Aug-2024onntri51 7300 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2-Aug-2024onntri13 7298 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e. 
 On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2-Aug-2024onntri35 7297 Double negated ordinal trichotomy.

There are five equivalent statements: (1)  -.  -.  A. x  e.  On A. y  e.  On ( x  e.  y  \/  x  =  y  \/  y  e.  x ), (2)  -.  -.  A. x  e.  On A. y  e.  On ( x  C_  y  \/  y  C_  x ), (3)  A. x  e.  On A. y  e.  On -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ), (4)  A. x  e.  On A. y  e.  On -.  -.  (
x  C_  y  \/  y  C_  x ), and (5)  -.  -. EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7298), (3) implies (5) (onntri35 7297), (5) implies (1) (onntri51 7300), (2) implies (4) (onntri24 7302), (4) implies (5) (onntri45 7301), and (5) implies (2) (onntri52 7304).

Another way of stating this is that EXMID is equivalent to trichotomy, either the  x  e.  y  \/  x  =  y  \/  y  e.  x or the  x  C_  y  \/  y  C_  x form, as shown in exmidontri 7299 and exmidontri2or 7303, respectively. Thus  -.  -. EXMID is equivalent to (1) or (2). In addition, 
-.  -. EXMID is equivalent to (3) by onntri3or 7305 and (4) by onntri2or 7306.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  -. EXMID )
 
1-Aug-2024nnral 2484 The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1660. (Contributed by Jim Kingdon, 1-Aug-2024.)
 |-  ( -.  -.  A. x  e.  A  ph  ->  A. x  e.  A  -.  -.  ph )
 
31-Jul-20243nsssucpw1 7296 Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
 
31-Jul-2024sucpw1nss3 7295 Negated excluded middle implies that the successor of the power set of  1o is not a subset of  3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_ 
 3o )
 
30-Jul-2024psrbagf 14156 A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( F  e.  D  ->  F : I --> NN0 )
 
30-Jul-20243nelsucpw1 7294 Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  3o  e.  suc  ~P 1o
 
30-Jul-2024sucpw1nel3 7293 The successor of the power set of 
1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  suc  ~P 1o  e.  3o
 
30-Jul-2024sucpw1ne3 7292 Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
 
30-Jul-2024pw1nel3 7291 Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
 
30-Jul-2024pw1ne3 7290 The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  3o
 
30-Jul-2024pw1ne1 7289 The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  1o
 
30-Jul-2024pw1ne0 7288 The power set of  1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  (/)
 
29-Jul-2024grpcld 13086 Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
29-Jul-2024pw1on 7286 The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
 |- 
 ~P 1o  e.  On
 
28-Jul-2024exmidpweq 6965 Excluded middle is equivalent to the power set of  1o being  2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
 |-  (EXMID  <->  ~P 1o  =  2o )
 
27-Jul-2024dcapnconstALT 15552 Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 15551 by means of dceqnconst 15550. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
27-Jul-2024reap0 15548 Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  RR DECID  z #  0 )
 
26-Jul-2024nconstwlpolemgt0 15554 Lemma for nconstwlpo 15556. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )   =>    |-  ( ph  ->  0  <  A )
 
26-Jul-2024nconstwlpolem0 15553 Lemma for nconstwlpo 15556. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  A. x  e.  NN  ( G `  x )  =  0 )   =>    |-  ( ph  ->  A  =  0 )
 
24-Jul-2024tridceq 15546 Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15533 and redcwlpo 15545). Thus, this is an analytic analogue to lpowlpo 7227. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  A. x  e.  RR  A. y  e. 
 RR DECID  x  =  y )
 
24-Jul-2024iswomni0 15541 Weak omniscience stated in terms of equality with  0. Like iswomninn 15540 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  0 ) )
 
24-Jul-2024lpowlpo 7227 LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7226. There is an analogue in terms of analytic omniscience principles at tridceq 15546. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( om  e. Omni  ->  om  e. WOmni )
 
23-Jul-2024nconstwlpolem 15555 Lemma for nconstwlpo 15556. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   &    |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i
 ) )  x.  ( G `  i ) )   =>    |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
 
23-Jul-2024dceqnconst 15550 Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 15545 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f
 ( f : RR --> ZZ  /\  ( f `  0 )  =  0  /\  A. x  e.  RR+  ( f `  x )  =/=  0 ) )
 
23-Jul-2024redc0 15547 Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y 
 <-> 
 A. z  e.  RR DECID  z  =  0 )
 
23-Jul-2024canth 5871 No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1511 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
 |-  A  e.  _V   =>    |-  -.  F : A -onto-> ~P A
 
22-Jul-2024nconstwlpo 15556 Existence of a certain non-constant function from reals to integers implies  om  e. WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   =>    |-  ( ph  ->  om  e. WOmni )
 
15-Jul-2024fprodseq 11726 The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( 
 seq 1 (  x. 
 ,  ( n  e. 
 NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
 
14-Jul-2024rexbid2 2499 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
14-Jul-2024ralbid2 2498 Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch )
 ) )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
12-Jul-20242irrexpqap 15110 There exist real numbers  a and  b which are irrational (in the sense of being apart from any rational number) such that  ( a ^ b ) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers  ( sqr `  2 ) and  ( 2 logb  9 ), see sqrt2irrap 12318, 2logb9irrap 15109 and sqrt2cxp2logb9e3 15107. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
 |- 
 E. a  e.  RR  E. b  e.  RR  ( A. p  e.  QQ  a #  p  /\  A. q  e.  QQ  b #  q  /\  ( a  ^c  b )  e.  QQ )
 
12-Jul-20242logb9irrap 15109 Example for logbgcd1irrap 15102. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.)
 |-  ( Q  e.  QQ  ->  ( 2 logb  9 ) #  Q )
 
12-Jul-2024erlecpbl 12915 Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A N B  <->  C N D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( A N B  <->  C N D ) ) )
 
12-Jul-2024ercpbl 12914 Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  (
 ( ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  ( a  .+  b )  e.  V )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
 
12-Jul-2024ercpbllemg 12913 Lemma for ercpbl 12914. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   =>    |-  ( ph  ->  (
 ( F `  A )  =  ( F `  B )  <->  A  .~  B ) )
 
12-Jul-2024divsfvalg 12912 Value of the function in qusval 12906. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
12-Jul-2024divsfval 12911 Value of the function in qusval 12906. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
11-Jul-2024logbgcd1irraplemexp 15100 Lemma for logbgcd1irrap 15102. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ph  ->  X  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  ( X  gcd  B )  =  1 )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( X ^ N ) #  ( B ^ M ) )
 
11-Jul-2024reapef 14913 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( exp `  A ) #  ( exp `  B )
 ) )
 
10-Jul-2024apcxp2 15072 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
 |-  ( ( ( A  e.  RR+  /\  A #  1
 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C  <->  ( A  ^c  B ) #  ( A 
 ^c  C ) ) )
 
9-Jul-2024logbgcd1irraplemap 15101 Lemma for logbgcd1irrap 15102. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
 |-  ( ph  ->  X  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  ( X  gcd  B )  =  1 )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )
 
9-Jul-2024apexp1 10789 Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
 
5-Jul-2024logrpap0 15012 The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.)
 |-  ( ( A  e.  RR+  /\  A #  1 )  ->  ( log `  A ) #  0 )
 
3-Jul-2024rplogbval 15077 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  (
 ( log `  X )  /  ( log `  B ) ) )
 
3-Jul-2024logrpap0d 15013 Deduction form of logrpap0 15012. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  ( log `  A ) #  0 )
 
3-Jul-2024logrpap0b 15011 The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( A  e.  RR+  ->  ( A #  1  <->  ( log `  A ) #  0 ) )
 
28-Jun-20242o01f 15487 Mapping zero and one between  om and  NN0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
 
28-Jun-2024012of 15486 Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
 
27-Jun-2024iooreen 15525 An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.)
 |-  (
 0 (,) 1 )  ~~  RR
 
27-Jun-2024iooref1o 15524 A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
 |-  F  =  ( x  e.  RR  |->  ( 1  /  (
 1  +  ( exp `  x ) ) ) )   =>    |-  F : RR -1-1-onto-> ( 0 (,) 1
 )
 
25-Jun-2024neapmkvlem 15557 Lemma for neapmkv 15558. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  (
 ( ph  /\  A  =/=  1 )  ->  A #  1
 )   =>    |-  ( ph  ->  ( -.  A. x  e.  NN  ( F `  x )  =  1  ->  E. x  e.  NN  ( F `  x )  =  0
 ) )
 
25-Jun-2024ismkvnn 15543 The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
25-Jun-2024ismkvnnlem 15542 Lemma for ismkvnn 15543. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
25-Jun-2024enmkvlem 7220 Lemma for enmkv 7221. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  ->  B  e. Markov ) )
 
24-Jun-2024neapmkv 15558 If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  ->  om  e. Markov )
 
24-Jun-2024dcapnconst 15551 Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 15533 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 15550 and in fact this theorem can be proved using dceqnconst 15550 as shown at dcapnconstALT 15552. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
24-Jun-2024enmkv 7221 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6483 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
 
21-Jun-2024redcwlpolemeq1 15544 Lemma for redcwlpo 15545. A biconditionalized version of trilpolemeq1 15530. (Contributed by Jim Kingdon, 21-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  ( A  =  1  <->  A. x  e.  NN  ( F `  x )  =  1 ) )
 
20-Jun-2024redcwlpo 15545 Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15544). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10314 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  om  e. WOmni )
 
20-Jun-2024iswomninn 15540 Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7225 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
20-Jun-2024iswomninnlem 15539 Lemma for iswomnimap 7225. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
20-Jun-2024enwomni 7229 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either  om  e. WOmni or  NN0  e. WOmni. The former is a better match to conventional notation in the sense that df2o3 6483 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )
 
20-Jun-2024enwomnilem 7228 Lemma for enwomni 7229. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni ) )
 
19-Jun-2024rpabscxpbnd 15073 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  0  <  ( Re `  B ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <_  M )   =>    |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
 ( abs `  B )  x.  pi ) ) ) )
 
16-Jun-2024rpcxpsqrt 15056 The exponential function with exponent 
1  /  2 exactly matches the square root function, and thus serves as a suitable generalization to other  n-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.)
 |-  ( A  e.  RR+  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A ) )
 
16-Jun-2024biadanid 614 Deduction associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  ( ps 
 <-> 
 th ) )   =>    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )
 
13-Jun-2024rpcxpadd 15040 Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  ^c 
 ( B  +  C ) )  =  (
 ( A  ^c  B )  x.  ( A  ^c  C ) ) )
 
12-Jun-2024cxpap0 15039 Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B ) #  0 )
 
12-Jun-2024rpcncxpcl 15037 Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
 
12-Jun-2024rpcxp0 15033 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( A  e.  RR+  ->  ( A  ^c  0 )  =  1 )
 
12-Jun-2024cxpexpnn 15031 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  ^c  B )  =  ( A ^ B ) )
 
12-Jun-2024cxpexprp 15030 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  ZZ )  ->  ( A  ^c  B )  =  ( A ^ B ) )
 
12-Jun-2024rpcxpef 15029 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A )
 ) ) )
 
12-Jun-2024df-rpcxp 14994 Define the power function on complex numbers. Because df-relog 14993 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |- 
 ^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  (
 y  x.  ( log `  x ) ) ) )
 
10-Jun-2024trirec0xor 15535 Version of trirec0 15534 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/_  x  =  0 )
 )
 
10-Jun-2024trirec0 15534 Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 15533). (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/  x  =  0 ) )
 
9-Jun-2024omniwomnimkv 7226 A set is omniscient if and only if it is weakly omniscient and Markov. The case  A  =  om says that LPO  <-> WLPO  /\ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e. Omni  <->  ( A  e. WOmni  /\  A  e. Markov ) )
 
9-Jun-2024iswomnimap 7225 The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1o ) )
 
9-Jun-2024iswomni 7224 The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
 
9-Jun-2024df-womni 7223 A weakly omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular,  om  e. WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x )  =  1o ) }
 
1-Jun-2024ringcmnd 13531 A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e. CMnd )
 
1-Jun-2024ringabld 13530 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e.  Abel )
 
1-Jun-2024cmnmndd 13378 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  G  e.  Mnd )
 
1-Jun-2024ablcmnd 13362 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e. CMnd )
 
1-Jun-2024grpmndd 13085 A group is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  G  e.  Mnd )
 
29-May-2024pw1nct 15493 A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
 |-  ( A. r ( r  C_  ( ~P 1o  X.  om )  ->  ( A. p  e.  ~P  1o E. n  e.  om  p r n 
 ->  E. m  e.  om  A. q  e.  ~P  1o q r m ) )  ->  -.  E. f  f : om -onto-> ( ~P 1o 1o ) )
 
28-May-2024sssneq 15492 Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
 |-  ( A  C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
 
26-May-2024elpwi2 4187 Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
 |-  B  e.  V   &    |-  A  C_  B   =>    |-  A  e.  ~P B
 
24-May-2024dvmptcjx 14871 Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
 |-  ( ( ph  /\  x  e.  X )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  V )   &    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X  C_  RR )   =>    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  ( * `  A ) ) )  =  ( x  e.  X  |->  ( * `  B ) ) )
 
23-May-2024cbvralfw 2716 Rule used to change bound variables, using implicit substitution. Version of cbvralf 2718 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
22-May-2024efltlemlt 14909 Lemma for eflt 14910. The converse of efltim 11841 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( exp `  A )  <  ( exp `  B ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  ( ( abs `  ( A  -  B ) )  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )   =>    |-  ( ph  ->  A  <  B )
 
21-May-2024eflt 14910 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( exp `  A )  <  ( exp `  B ) ) )
 
19-May-2024apdifflemr 15537 Lemma for apdiff 15538. (Contributed by Jim Kingdon, 19-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  S  e.  QQ )   &    |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )   &    |-  ( ( ph  /\  S  =/=  0 ) 
 ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )   =>    |-  ( ph  ->  A #  S )
 
18-May-2024apdifflemf 15536 Lemma for apdiff 15538. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  Q  e.  QQ )   &    |-  ( ph  ->  R  e.  QQ )   &    |-  ( ph  ->  Q  <  R )   &    |-  ( ph  ->  (
 ( Q  +  R )  /  2 ) #  A )   =>    |-  ( ph  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
 
17-May-2024apdiff 15538 The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
 |-  ( A  e.  RR  ->  (
 A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
 q  =/=  r  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) ) ) )
 
16-May-2024lmodgrpd 13793 A left module is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  W  e.  LMod )   =>    |-  ( ph  ->  W  e.  Grp )
 
16-May-2024crnggrpd 13506 A commutative ring is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  R  e.  Grp )
 
16-May-2024crngringd 13505 A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  R  e.  Ring )
 
16-May-2024ringgrpd 13501 A ring is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e.  Grp )
 
15-May-2024reeff1oleme 14907 Lemma for reeff1o 14908. (Contributed by Jim Kingdon, 15-May-2024.)
 |-  ( U  e.  (
 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x )  =  U )
 
14-May-2024df-relog 14993 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
 |- 
 log  =  `' ( exp  |`  RR )
 
12-May-2024dvdstrd 11973 The divides relation is transitive, a deduction version of dvdstr 11971. (Contributed by metakunt, 12-May-2024.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  M 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  N )
 
7-May-2024ioocosf1o 14989 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
 |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,)
 pi ) -1-1-onto-> ( -u 1 (,) 1
 )
 
7-May-2024cos0pilt1 14987 Cosine is between minus one and one on the open interval between zero and  pi. (Contributed by Jim Kingdon, 7-May-2024.)
 |-  ( A  e.  (
 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1
 ) )
 
6-May-2024cos11 14988 Cosine is one-to-one over the closed interval from  0 to  pi. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
 |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  (
 0 [,] pi ) ) 
 ->  ( A  =  B  <->  ( cos `  A )  =  ( cos `  B ) ) )
 
5-May-2024omiunct 12601 The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12597 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ( ph  /\  x  e.  om )  ->  E. g  g : om -onto-> ( B 1o )
 )   =>    |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  om  B 1o )
 )
 
5-May-2024ctiunctal 12598 Variation of ctiunct 12597 which allows  x to be present in  ph. (Contributed by Jim Kingdon, 5-May-2024.)
 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  ( ph  ->  A. x  e.  A  G : om -onto->
 ( B 1o ) )   =>    |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
 
3-May-2024cc4n 7331 Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7330, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ch ) )
 
3-May-2024cc4f 7329 Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  F/_ n A   &    |-  ( ph  ->  N  ~~ 
 om )   &    |-  ( x  =  ( f `  n )  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
1-May-2024cc4 7330 Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
29-Apr-2024cc3 7328 Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  F  e.  _V )   &    |-  ( ph  ->  A. n  e.  N  E. w  w  e.  F )   &    |-  ( ph  ->  N  ~~ 
 om )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  F )
 )
 
27-Apr-2024cc2 7327 Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
27-Apr-2024cc2lem 7326 Lemma for cc2 7327. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   &    |-  A  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )   &    |-  G  =  ( n  e.  om  |->  ( 2nd `  (
 f `  ( A `  n ) ) ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
27-Apr-2024cc1 7325 Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  (CCHOICE 
 ->  A. x ( ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
 )  ->  E. f A. z  e.  x  ( f `  z
 )  e.  z ) )
 
24-Apr-2024lsppropd 13928 If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  B  C_  W )   &    |-  ( ( ph  /\  ( x  e.  W  /\  y  e.  W ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  K ) ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  L ) ) )   &    |-  ( ph  ->  K  e.  X )   &    |-  ( ph  ->  L  e.  Y )   =>    |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L )
 )
 
19-Apr-2024omctfn 12600 Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ( ph  /\  x  e.  om )  ->  E. g  g : om -onto-> ( B 1o )
 )   =>    |-  ( ph  ->  E. f
 ( f  Fn  om  /\ 
 A. x  e.  om  ( f `  x ) : om -onto-> ( B 1o ) ) )
 
13-Apr-2024prodmodclem2 11720 Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  (
 ( A  C_  ( ZZ>=
 `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) 
 /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
11-Apr-2024prodmodclem2a 11719 Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  (  seq 1
 (  x.  ,  G ) `  N ) )
 
11-Apr-2024prodmodclem3 11718 Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
10-Apr-2024jcnd 653 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  -.  ( ps  ->  ch ) )
 
4-Apr-2024prodrbdclem 11714 Lemma for prodrbdc 11717. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
24-Mar-2024prodfdivap 11690 The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `
  N )  /  (  seq M (  x. 
 ,  G ) `  N ) ) )
 
24-Mar-2024prodfrecap 11689 The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  =  ( 1 
 /  ( F `  k ) ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   =>    |-  ( ph  ->  (  seq M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq M (  x.  ,  F ) `
  N ) ) )
 
23-Mar-2024prodfap0 11688 The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `  N ) #  0 )
 
22-Mar-2024prod3fmul 11684 The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  x.  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq M (  x.  ,  G ) `
  N ) ) )
 
21-Mar-2024df-proddc 11694 Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sumdc 11497 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
 |- 
 prod_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( ( A 
 C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m ) ) ) )
 
19-Mar-2024cos02pilt1 14986 Cosine is less than one between zero and  2  x.  pi. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  (
 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
19-Mar-2024cosq34lt1 14985 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
14-Mar-2024coseq0q4123 14969 Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
14-Mar-2024cosq23lt0 14968 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( cos `  A )  <  0 )
 
9-Mar-2024pilem3 14918 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
9-Mar-2024exmidonfin 7254 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6928 and nnon 4642. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  ( om  =  ( On  i^i  Fin )  -> EXMID )
 
9-Mar-2024exmidonfinlem 7253 Lemma for exmidonfin 7254. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
 
8-Mar-2024sin0pilem2 14917 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
8-Mar-2024sin0pilem1 14916 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
7-Mar-2024cosz12 14915 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
6-Mar-2024cos12dec 11911 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
 |-  ( ( A  e.  ( 1 [,] 2
 )  /\  B  e.  ( 1 [,] 2
 )  /\  A  <  B )  ->  ( cos `  B )  <  ( cos `  A ) )
 
2-Mar-2024scaffvalg 13802 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( W  e.  V  -> 
 .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
 
2-Mar-2024dvrfvald 13629 Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  .x.  =  ( .r `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  I  =  ( invr `  R ) )   &    |-  ( ph  ->  ./  =  (/r `  R ) )   &    |-  ( ph  ->  R  e. SRing )   =>    |-  ( ph  ->  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
 .x.  ( I `  y ) ) ) )
 
2-Mar-2024plusffvalg 12945 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  V  -> 
 .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y ) ) )
 
25-Feb-2024insubm 13057 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
 |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M ) )  ->  ( A  i^i  B )  e.  (SubMnd `  M )
 )
 
25-Feb-2024mul2lt0pn 9830 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  0
 )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( B  x.  A )  < 
 0 )
 
25-Feb-2024mul2lt0np 9829 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  0
 )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( A  x.  B )  < 
 0 )
 
25-Feb-2024lt0ap0 8667 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ( A  e.  RR  /\  A  <  0
 )  ->  A #  0
 )
 
25-Feb-2024negap0d 8650 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  -u A #  0 )
 
24-Feb-2024lt0ap0d 8668 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A #  0 )
 
20-Feb-2024ivthdec 14798 The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `  A ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  y )  <  ( F `  x ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
20-Feb-2024ivthinclemex 14796 Lemma for ivthinc 14797. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
 
19-Feb-2024ivthinclemuopn 14792 Lemma for ivthinc 14797. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   &    |-  ( ph  ->  S  e.  R )   =>    |-  ( ph  ->  E. q  e.  R  q  <  S )
 
19-Feb-2024dedekindicc 14787 A Dedekind cut identifies a unique real number. Similar to df-inp 7526 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A (,) B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
 
19-Feb-2024grpsubfvalg 13117 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
 .+  ( I `  y ) ) ) )
 
18-Feb-2024ivthinclemloc 14795 Lemma for ivthinc 14797. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  (
 q  e.  L  \/  r  e.  R )
 ) )
 
18-Feb-2024ivthinclemdisj 14794 Lemma for ivthinc 14797. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  ( L  i^i  R )  =  (/) )
 
18-Feb-2024ivthinclemur 14793 Lemma for ivthinc 14797. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
 
18-Feb-2024ivthinclemlr 14791 Lemma for ivthinc 14797. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
 
18-Feb-2024ivthinclemum 14789 Lemma for ivthinc 14797. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
 
18-Feb-2024ivthinclemlm 14788 Lemma for ivthinc 14797. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
 
17-Feb-20240subm 13056 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G ) )
 
17-Feb-2024mndissubm 13047 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  S  e.  (SubMnd `  G )
 ) )
 
17-Feb-2024mgmsscl 12944 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S 
 C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 /\  ( X  e.  S  /\  Y  e.  S ) )  ->  ( X ( +g  `  G ) Y )  e.  S )
 
15-Feb-2024dedekindicclemeu 14785 Lemma for dedekindicc 14787. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  C  e.  ( A [,] B ) )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )   &    |-  ( ph  ->  D  e.  ( A [,] B ) )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r
 ) )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  -> F.  )
 
15-Feb-2024dedekindicclemlu 14784 Lemma for dedekindicc 14787. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
15-Feb-2024dedekindicclemlub 14783 Lemma for dedekindicc 14787. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e.  ( A [,] B ) ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
15-Feb-2024dedekindicclemloc 14782 Lemma for dedekindicc 14787. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
15-Feb-2024dedekindicclemub 14781 Lemma for dedekindicc 14787. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
 
15-Feb-2024dedekindicclemuub 14780 Lemma for dedekindicc 14787. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  C )
 
14-Feb-2024suplociccex 14779 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8092 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  ( B [,] C ) ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
14-Feb-2024suplociccreex 14778 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8092 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
10-Feb-2024cbvexdvaw 1943 Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 1941 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
10-Feb-2024cbvaldvaw 1942 Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 1940 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
6-Feb-2024ivthinclemlopn 14790 Lemma for ivthinc 14797. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   &    |-  ( ph  ->  Q  e.  L )   =>    |-  ( ph  ->  E. r  e.  L  Q  <  r
 )
 
5-Feb-2024ivthinc 14797 The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
2-Feb-2024dedekindeulemuub 14771 Lemma for dedekindeu 14777. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  A )
 
31-Jan-2024dedekindeulemeu 14776 Lemma for dedekindeu 14777. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  -> F.  )
 
31-Jan-2024dedekindeulemlu 14775 Lemma for dedekindeu 14777. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
31-Jan-2024dedekindeulemlub 14774 Lemma for dedekindeu 14777. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
31-Jan-2024dedekindeulemloc 14773 Lemma for dedekindeu 14777. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e. 
 RR  A. y  e.  RR  ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
31-Jan-2024dedekindeulemub 14772 Lemma for dedekindeu 14777. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
 
30-Jan-2024axsuploc 8092 An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7993 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) ) ) 
 ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
30-Jan-2024iotam 5246 Representation of "the unique element such that  ph " with a class expression  A which is inhabited (that means that "the unique element such that  ph " exists). (Contributed by AV, 30-Jan-2024.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota
 x ph ) )  ->  ps )
 
29-Jan-2024sgrpidmndm 13001 A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. Smgrp  /\ 
 E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
 
26-Jan-2024elovmporab1w 6119 Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG, 26-Jan-2024.)
 |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  [_ x  /  m ]_ M  |  ph } )   &    |-  (
 ( X  e.  _V  /\  Y  e.  _V )  -> 
 [_ X  /  m ]_ M  e.  _V )   =>    |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  [_ X  /  m ]_ M ) )
 
26-Jan-2024opabidw 4287 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 4286 with a disjoint variable condition. (Contributed by NM, 14-Apr-1995.) (Revised by GG, 26-Jan-2024.)
 |-  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  <->  ph )
 
24-Jan-2024axpre-suploclemres 7961 Lemma for axpre-suploc 7962. The result. The proof just needs to define  B as basically the same set as  A (but expressed as a subset of  R. rather than a subset of  RR), and apply suplocsr 7869. (Contributed by Jim Kingdon, 24-Jan-2024.)
 |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y 
 <RR  x )   &    |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )   &    |-  B  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
 y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
23-Jan-2024ax-pre-suploc 7993 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

Although this and ax-caucvg 7992 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7992.

(Contributed by Jim Kingdon, 23-Jan-2024.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
23-Jan-2024axpre-suploc 7962 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7993. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
22-Jan-2024suplocsr 7869 An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
21-Jan-2024bj-el2oss1o 15266 Shorter proof of el2oss1o 6496 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  2o  ->  A 
 C_  1o )
 
21-Jan-2024ltm1sr 7837 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
20-Jan-2024mndinvmod 13026 Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
 
19-Jan-2024suplocsrlempr 7867 Lemma for suplocsr 7869. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w 
 /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
 
18-Jan-2024suplocsrlemb 7866 Lemma for suplocsr 7869. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  A. u  e. 
 P.  A. v  e.  P.  ( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
 
16-Jan-2024suplocsrlem 7868 Lemma for suplocsr 7869. The set  A has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
15-Jan-2024eqg0el 13299 Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
 |- 
 .~  =  ( G ~QG  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G ) )  ->  ( [ X ]  .~  =  H  <->  X  e.  H ) )
 
14-Jan-2024suplocexprlemlub 7784 Lemma for suplocexpr 7785. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
 
14-Jan-2024suplocexprlemub 7783 Lemma for suplocexpr 7785. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
 
10-Jan-2024nfcsbw 3117 Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3118 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x [_ A  /  y ]_ B
 
10-Jan-2024nfsbcw 3115 Bound-variable hypothesis builder for class substitution. Version of nfsbc 3006 with a disjoint variable condition, which in the future may make it possible to reduce axiom usage. (Contributed by NM, 7-Sep-2014.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x [. A  /  y ]. ph
 
10-Jan-2024nfsbcdw 3114 Version of nfsbcd 3005 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x [. A  /  y ]. ps )
 
10-Jan-2024cbvcsbw 3084 Version of cbvcsb 3085 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
 |-  F/_ y C   &    |-  F/_ x D   &    |-  ( x  =  y  ->  C  =  D )   =>    |-  [_ A  /  x ]_ C  =  [_ A  /  y ]_ D
 
10-Jan-2024cbvsbcw 3013 Version of cbvsbc 3014 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
10-Jan-2024cbvrex2vw 2738 Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2740 with a disjoint variable condition, which does not require ax-13 2166. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
10-Jan-2024cbvral2vw 2737 Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2739 with a disjoint variable condition, which does not require ax-13 2166. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
10-Jan-2024cbvrexw 2721 Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2717 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
10-Jan-2024cbvralw 2720 Rule used to change bound variables, using implicit substitution. Version of cbvral 2722 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
10-Jan-2024cbvrexfw 2717 Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2719 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
10-Jan-2024nfralw 2531 Bound-variable hypothesis builder for restricted quantification. See nfralya 2534 for a version with  y and 
A distinct instead of  x and  y. (Contributed by NM, 1-Sep-1999.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
10-Jan-2024nfraldw 2526 Not-free for restricted universal quantification where  x and  y are distinct. See nfraldya 2529 for a version with  y and  A distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y  e.  A  ps )
 
10-Jan-2024nfabdw 2355 Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2356 with a disjoint variable condition. (Contributed by Mario Carneiro, 8-Oct-2016.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/_ x { y  |  ps } )
 
10-Jan-2024cbvex2vw 1945 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) (Revised by GG, 10-Jan-2024.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ph  <->  E. z E. w ps )
 
10-Jan-2024cbval2vw 1944 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.) (Revised by GG, 10-Jan-2024.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x A. y ph  <->  A. z A. w ps )
 
10-Jan-2024cbv2w 1761 Rule used to change bound variables, using implicit substitution. Version of cbv2 1760 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
9-Jan-2024suplocexprlemloc 7781 Lemma for suplocexpr 7785. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
 
9-Jan-2024suplocexprlemdisj 7780 Lemma for suplocexpr 7785. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
 
9-Jan-2024suplocexprlemru 7779 Lemma for suplocexpr 7785. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. r  e. 
 Q.  ( r  e.  ( 2nd `  B ) 
 <-> 
 E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
 
9-Jan-2024suplocexprlemrl 7777 Lemma for suplocexpr 7785. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
 
9-Jan-2024suplocexprlem2b 7774 Lemma for suplocexpr 7785. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
9-Jan-2024suplocexprlemell 7773 Lemma for suplocexpr 7785. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
7-Jan-2024suplocexpr 7785 An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y 
 /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
 
7-Jan-2024suplocexprlemex 7782 Lemma for suplocexpr 7785. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  B  e.  P. )
 
7-Jan-2024suplocexprlemmu 7778 Lemma for suplocexpr 7785. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
 
7-Jan-2024suplocexprlemml 7776 Lemma for suplocexpr 7785. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
7-Jan-2024suplocexprlemss 7775 Lemma for suplocexpr 7785. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
5-Jan-2024dedekindicclemicc 14786 Lemma for dedekindicc 14787. Same as dedekindicc 14787, except that we merely show  x to be an element of  ( A [,] B ). Later we will strengthen that to  ( A (,) B
). (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
 
5-Jan-2024dedekindeu 14777 A Dedekind cut identifies a unique real number. Similar to df-inp 7526 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E! x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
31-Dec-2023dvmptsubcn 14870 Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  (
 ( ph  /\  x  e. 
 CC )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  D  e.  W )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
 
31-Dec-2023dvmptnegcn 14869 Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  -u A ) )  =  ( x  e.  CC  |->  -u B ) )
 
31-Dec-2023dvmptcmulcn 14868 Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( C  x.  A ) ) )  =  ( x  e. 
 CC  |->  ( C  x.  B ) ) )
 
31-Dec-2023rinvmod 13379 Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6112. (Contributed by AV, 31-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
 
31-Dec-2023brm 4079 If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
30-Dec-2023dvmptccn 14864 Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  A ) )  =  ( x  e. 
 CC  |->  0 ) )
 
30-Dec-2023dvmptidcn 14863 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 )
 
30-Dec-2023eqwrd 10954 Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.)
 |-  ( ( U  e. Word  S 
 /\  W  e. Word  T )  ->  ( U  =  W 
 <->  ( ( `  U )  =  ( `  W )  /\  A. i  e.  ( 0..^ ( `  U ) ) ( U `
  i )  =  ( W `  i
 ) ) ) )
 
29-Dec-2023mndbn0 13012 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13011). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Mnd  ->  B  =/=  (/) )
 
28-Dec-2023mulgnn0gsum 13198 Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN0  /\  X  e.  B ) 
 ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
 
28-Dec-2023mulgnngsum 13197 Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G 
 gsumg  F ) )
 
26-Dec-2023gsumfzreidx 13407 Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with  M  =  1. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   &    |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
26-Dec-2023gsumsplit1r 12981 Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... ( N  +  1
 ) ) --> B )   =>    |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M
 ... N ) ) )  .+  ( F `
  ( N  +  1 ) ) ) )
 
26-Dec-2023lidrididd 12965 If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 12964) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  L  =  .0.  )
 
26-Dec-2023lidrideqd 12964 If there is a left and right identity element for any binary operation (group operation)  .+, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   =>    |-  ( ph  ->  L  =  R )
 
25-Dec-2023ctfoex 7177 A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  A  e.  _V )
 
23-Dec-2023enct 12590 Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |-  ( A  ~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> ( B 1o )
 ) )
 
23-Dec-2023enctlem 12589 Lemma for enct 12590. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |-  ( A  ~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
 
23-Dec-2023omct 7176  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |- 
 E. f  f : om -onto-> ( om 1o )
 
21-Dec-2023dvcoapbr 14856 The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : Y --> X )   &    |-  ( ph  ->  Y  C_  T )   &    |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  T  C_ 
 CC )   &    |-  ( ph  ->  ( G `  C ) ( S  _D  F ) K )   &    |-  ( ph  ->  C ( T  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( T  _D  ( F  o.  G ) ) ( K  x.  L ) )
 
19-Dec-2023apsscn 8666 The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |- 
 { x  e.  A  |  x #  B }  C_ 
 CC
 
19-Dec-2023aprcl 8665 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC )
 )
 
18-Dec-2023limccoap 14832 Composition of two limits. This theorem is only usable in the case where  x #  X implies R(x) #  C so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
 |-  ( ( ph  /\  x  e.  { w  e.  A  |  w #  X }
 )  ->  R  e.  { w  e.  B  |  w #  C } )   &    |-  (
 ( ph  /\  y  e. 
 { w  e.  B  |  w #  C }
 )  ->  S  e.  CC )   &    |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim CC  X ) )   &    |-  ( ph  ->  D  e.  (
 ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
 CC  C ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  D  e.  ( ( x  e. 
 { w  e.  A  |  w #  X }  |->  T ) lim CC  X ) )
 
16-Dec-2023cnreim 11122 Complex apartness in terms of real and imaginary parts. See also apreim 8622 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
14-Dec-2023cnopnap 14765 The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o. 
 -  ) ) )
 
14-Dec-2023cnovex 14364 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K )  e.  _V )
 
13-Dec-2023reopnap 14706 The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
 |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen `  ran  (,) )
 )
 
12-Dec-2023cnopncntop 14705 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  e.  ( MetOpen `  ( abs  o.  -  )
 )
 
12-Dec-2023unicntopcntop 14704 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  =  U. ( MetOpen `  ( abs  o.  -  ) )
 
4-Dec-2023bj-pm2.18st 15242 Clavius law for stable formulas. See pm2.18dc 856. (Contributed by BJ, 4-Dec-2023.)
 |-  (STAB  ph  ->  ( ( -.  ph  ->  ph )  ->  ph ) )
 
4-Dec-2023bj-nnclavius 15229 Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.)
 |-  (
 ( -.  ph  ->  ph )  ->  -.  -.  ph )
 
2-Dec-2023dvmulxx 14853 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 14851. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( (
 ( ( S  _D  F ) `  C )  x.  ( G `  C ) )  +  ( ( ( S  _D  G ) `  C )  x.  ( F `  C ) ) ) )
 
1-Dec-2023dvmulxxbr 14851 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 14853. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `
  C ) )  +  ( L  x.  ( F `  C ) ) ) )
 
29-Nov-2023subctctexmid 15491 If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( ph  ->  A. x ( E. s ( s  C_  om 
 /\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )   &    |-  ( ph  ->  om  e. Markov )   =>    |-  ( ph  -> EXMID )
 
29-Nov-2023ismkvnex 7214 The predicate of being Markov stated in terms of double negation and comparison with  1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )
 ) )
 
28-Nov-2023ccfunen 7324 Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A 
 ~~  om )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
28-Nov-2023exmid1stab 4237 If every proposition is stable, excluded middle follows. We are thinking of  x as a proposition and  x  =  { (/)
} as " x is true". (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ( ph  /\  x  C_ 
 { (/) } )  -> STAB  x  =  { (/) } )   =>    |-  ( ph  -> EXMID )
 
27-Nov-2023df-cc 7323 The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7266 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
 |-  (CCHOICE  <->  A. x ( dom  x  ~~ 
 om  ->  E. f ( f 
 C_  x  /\  f  Fn  dom  x ) ) )
 
26-Nov-2023offeq 6144 Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  T )
 )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : B
 --> T )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   &    |-  ( ph  ->  H : C --> U )   &    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  D )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  E )   &    |-  (
 ( ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  H )
 
25-Nov-2023dvaddxx 14852 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 14850. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( (
 ( S  _D  F ) `  C )  +  ( ( S  _D  G ) `  C ) ) )
 
25-Nov-2023dvaddxxbr 14850 The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
 
25-Nov-2023dcnn 849 Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 843. The relation between dcn 843 and dcnn 849 is analogous to that between notnot 630 and notnotnot 635 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 849 means that a proposition is testable if and only if its negation is testable, and dcn 843 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
 |-  (DECID 
 -.  ph  <-> DECID  -.  -.  ph )
 
24-Nov-2023bj-dcst 15253 Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  (DECID STAB  ph  <-> STAB  ph )
 
24-Nov-2023bj-nnbidc 15249 If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 15236. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ph  ->  (DECID  ph  <->  ph ) )
 
24-Nov-2023bj-dcstab 15248 A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
 |-  (DECID  ph  -> STAB  ph )
 
24-Nov-2023bj-fadc 15246 A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  ph  -> DECID  ph )
 
24-Nov-2023bj-trdc 15244 A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( ph  -> DECID  ph )
 
24-Nov-2023bj-stal 15241 The universal quantification of a stable formula is stable. See bj-stim 15238 for implication, stabnot 834 for negation, and bj-stan 15239 for conjunction. (Contributed by BJ, 24-Nov-2023.)
 |-  ( A. xSTAB 
 ph  -> STAB  A. x ph )
 
24-Nov-2023bj-stand 15240 The conjunction of two stable formulas is stable. Deduction form of bj-stan 15239. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 15239 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
 |-  ( ph  -> STAB  ps )   &    |-  ( ph  -> STAB  ch )   =>    |-  ( ph  -> STAB 
 ( ps  /\  ch ) )
 
24-Nov-2023bj-stan 15239 The conjunction of two stable formulas is stable. See bj-stim 15238 for implication, stabnot 834 for negation, and bj-stal 15241 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
 |-  (
 (STAB  ph  /\ STAB 
 ps )  -> STAB  ( ph  /\  ps ) )
 
24-Nov-2023bj-stim 15238 A conjunction with a stable consequent is stable. See stabnot 834 for negation , bj-stan 15239 for conjunction , and bj-stal 15241 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
 |-  (STAB  ps  -> STAB  (
 ph  ->  ps ) )
 
24-Nov-2023bj-nnbist 15236 If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if  ph is a classical tautology, then  -.  -.  ph is an intuitionistic tautology. Therefore, if  ph is a classical tautology, then  ph is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 15249). (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ph  ->  (STAB  ph  <->  ph ) )
 
24-Nov-2023bj-fast 15233 A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  ph  -> STAB  ph )
 
24-Nov-2023bj-trst 15231 A provable formula is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( ph  -> STAB  ph )
 
24-Nov-2023bj-nnan 15228 The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ( ph  /\  ps )  ->  ( -.  -.  ph 
 /\  -.  -.  ps )
 )
 
24-Nov-2023bj-nnim 15227 The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ( ph  ->  ps )  ->  ( ph  ->  -.  -.  ps )
 )
 
24-Nov-2023bj-nnsn 15225 As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.)
 |-  (
 ( ph  ->  -.  ps ) 
 <->  ( -.  -.  ph  ->  -.  ps ) )
 
24-Nov-2023nnal 1660 The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  A. x ph  ->  A. x  -.  -.  ph )
 
22-Nov-2023ofvalg 6140 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  C )   &    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( G `  X )  =  D )   &    |-  (
 ( ph  /\  X  e.  S )  ->  ( C R D )  e.  U )   =>    |-  ( ( ph  /\  X  e.  S )  ->  (
 ( F  oF R G ) `  X )  =  ( C R D ) )
 
21-Nov-2023exmidac 7269 The axiom of choice implies excluded middle. See acexmid 5917 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  (CHOICE 
 -> EXMID )
 
21-Nov-2023exmidaclem 7268 Lemma for exmidac 7269. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }   &    |-  B  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  y  =  { (/) } ) }   &    |-  C  =  { A ,  B }   =>    |-  (CHOICE 
 -> EXMID )
 
21-Nov-2023exmid1dc 4229 A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4222 or ordtriexmid 4553. In this context  x  =  { (/) } can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  ( ( ph  /\  x  C_ 
 { (/) } )  -> DECID  x  =  { (/) } )   =>    |-  ( ph  -> EXMID )
 
20-Nov-2023acfun 7267 A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
 |-  ( ph  -> CHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
18-Nov-2023rnrhmsubrg 13748 The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
 |-  ( F  e.  ( M RingHom  N )  ->  ran  F  e.  (SubRing `  N )
 )
 
18-Nov-2023condc 854 Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky". This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.)

 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
18-Nov-2023stdcn 848 A formula is stable if and only if the decidability of its negation implies its decidability. Note that the right-hand side of this biconditional is the converse of dcn 843. (Contributed by BJ, 18-Nov-2023.)
 |-  (STAB 
 ph 
 <->  (DECID 
 -.  ph  -> DECID  ph ) )
 
17-Nov-2023cnplimclemr 14823 Lemma for cnplimccntop 14824. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   =>    |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
17-Nov-2023cnplimclemle 14822 Lemma for cnplimccntop 14824. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  Z  e.  A )   &    |-  (
 ( ph  /\  Z #  B  /\  ( abs `  ( Z  -  B ) )  <  D )  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )   &    |-  ( ph  ->  ( abs `  ( Z  -  B ) )  <  D )   =>    |-  ( ph  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  E )
 
14-Nov-2023limccnp2cntop 14831 The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   =>    |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
 
10-Nov-2023rpmaxcl 11367 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
9-Nov-2023limccnp2lem 14830 Lemma for limccnp2cntop 14831. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   &    |-  F/ x ph   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  L  e.  RR+ )   &    |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  (
 ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs 
 o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L )  ->  ( ( C H D ) ( abs  o.  -  )
 ( r H s ) )  <  E ) )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C ) )  <  L ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D ) )  <  L ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
 
4-Nov-2023ellimc3apf 14814 Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  F/_ z F   =>    |-  ( ph  ->  ( C  e.  ( F lim
 CC  B )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
 y )  ->  ( abs `  ( ( F `
  z )  -  C ) )  < 
 x ) ) ) )
 
3-Nov-2023limcmpted 14817 Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
 |-  ( ph  ->  A  C_ 
 CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  (
 ( ph  /\  z  e.  A )  ->  D  e.  CC )   =>    |-  ( ph  ->  ( C  e.  ( (
 z  e.  A  |->  D ) lim CC  B )  <-> 
 ( C  e.  CC  /\ 
 A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y ) 
 ->  ( abs `  ( D  -  C ) )  <  x ) ) ) )
 
1-Nov-2023unct 12599 The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
 |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
 
31-Oct-2023ctiunct 12597 A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each  B ( x ): it refers to  B ( x ) together with the  G ( x ) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be  ( ph  /\  x  e.  A )  ->  E. g g : om -onto-> ( B 1o ). This is almost omiunct 12601 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12599, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12552) and using the first number to map to an element  x of  A and the second number to map to an element of B(x) . In this way we are able to map to every element of  U_ x  e.  A B. Although it would be possible to work directly with countability expressed as  F : om -onto-> ( A 1o ), we instead use functions from subsets of the natural numbers via ctssdccl 7170 and ctssdc 7172.

(Contributed by Jim Kingdon, 31-Oct-2023.)

 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  ( ( ph  /\  x  e.  A )  ->  G : om -onto-> ( B 1o )
 )   =>    |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
 
30-Oct-2023ctssdccl 7170 A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7172 but expressed in terms of classes rather than  E.. (Contributed by Jim Kingdon, 30-Oct-2023.)
 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  S  =  { x  e.  om  |  ( F `
  x )  e.  (inl " A ) }   &    |-  G  =  ( `'inl  o.  F )   =>    |-  ( ph  ->  ( S  C_  om  /\  G : S -onto-> A  /\  A. n  e.  om DECID  n  e.  S ) )
 
28-Oct-2023ctiunctlemfo 12596 Lemma for ctiunct 12597. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  H  =  ( n  e.  U  |->  ( [_ ( F `  ( 1st `  ( J `  n ) ) ) 
 /  x ]_ G `  ( 2nd `  ( J `  n ) ) ) )   &    |-  F/_ x H   &    |-  F/_ x U   =>    |-  ( ph  ->  H : U -onto-> U_ x  e.  A  B )
 
28-Oct-2023ctiunctlemf 12595 Lemma for ctiunct 12597. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  H  =  ( n  e.  U  |->  ( [_ ( F `  ( 1st `  ( J `  n ) ) ) 
 /  x ]_ G `  ( 2nd `  ( J `  n ) ) ) )   =>    |-  ( ph  ->  H : U --> U_ x  e.  A  B )
 
28-Oct-2023ctiunctlemudc 12594 Lemma for ctiunct 12597. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   =>    |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
 
28-Oct-2023ctiunctlemuom 12593 Lemma for ctiunct 12597. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   =>    |-  ( ph  ->  U  C_  om )
 
28-Oct-2023ctiunctlemu2nd 12592 Lemma for ctiunct 12597. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  ( ph  ->  N  e.  U )   =>    |-  ( ph  ->  ( 2nd `  ( J `  N ) )  e.  [_ ( F `  ( 1st `  ( J `  N ) ) ) 
 /  x ]_ T )
 
28-Oct-2023ctiunctlemu1st 12591 Lemma for ctiunct 12597. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  ( ph  ->  N  e.  U )   =>    |-  ( ph  ->  ( 1st `  ( J `  N ) )  e.  S )
 
28-Oct-2023pm2.521gdc 869 A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( ch  ->  ph ) ) )
 
28-Oct-2023stdcndc 846 A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.)
 |-  ( (STAB 
 ph  /\ DECID  -.  ph )  <-> DECID  ph )
 
28-Oct-2023conax1k 655 Weakening of conax1 654. General instance of pm2.51 656 and of pm2.52 657. (Contributed by BJ, 28-Oct-2023.)
 |-  ( -.  ( ph  ->  ps )  ->  ( ch  ->  -.  ps )
 )
 
28-Oct-2023conax1 654 Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.)
 |-  ( -.  ( ph  ->  ps )  ->  -.  ps )
 
25-Oct-2023divcnap 14723 Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  { x  e.  CC  |  x #  0 } )   =>    |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  /  z ) )  e.  ( ( J  tX  K )  Cn  J )
 
23-Oct-2023cnm 7892 A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
23-Oct-2023oprssdmm 6224 Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
 |-  ( ( ph  /\  u  e.  S )  ->  E. v  v  e.  u )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ph  ->  Rel  F )   =>    |-  ( ph  ->  ( S  X.  S )  C_  dom  F )
 
22-Oct-2023addcncntoplem 14719 Lemma for addcncntop 14720, subcncntop 14721, and mulcncntop 14722. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |- 
 .+  : ( CC 
 X.  CC ) --> CC   &    |-  (
 ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  b ) )  < 
 y  /\  ( abs `  ( v  -  c
 ) )  <  z
 )  ->  ( abs `  ( ( u  .+  v )  -  (
 b  .+  c )
 ) )  <  a
 ) )   =>    |- 
 .+  e.  ( ( J  tX  J )  Cn  J )
 
22-Oct-2023txmetcnp 14686 Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 /\  ( A  e.  X  /\  B  e.  Y ) )  ->  ( F  e.  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) ) )
 
22-Oct-2023xmetxpbl 14676 The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  C  e.  ( X  X.  Y ) )   =>    |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  (
 ( 2nd `  C )
 ( ball `  N ) R ) ) )
 
15-Oct-2023xmettxlem 14677 Lemma for xmettx 14678. (Contributed by Jim Kingdon, 15-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  C_  ( J  tX  K ) )
 
11-Oct-2023xmettx 14678 The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  =  ( J  tX  K )
 )
 
11-Oct-2023xmetxp 14675 The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   =>    |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
 
7-Oct-2023df-iress 12626 Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)

 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base ` 
 ndx ) ,  ( x  i^i  ( Base `  w ) ) >. ) )
 
29-Sep-2023syl2anc2 412 Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
27-Sep-2023fnpr2ob 12923 Biconditional version of fnpr2o 12922. (Contributed by Jim Kingdon, 27-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  { <. (/) ,  A >. , 
 <. 1o ,  B >. }  Fn  2o )
 
25-Sep-2023xpsval 12935 Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |-  T  =  ( R  X.s  S )   &    |-  X  =  (
 Base `  R )   &    |-  Y  =  ( Base `  S )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  S  e.  W )   &    |-  F  =  ( x  e.  X ,  y  e.  Y  |->  { <. (/) ,  x >. ,  <. 1o ,  y >. } )   &    |-  G  =  (Scalar `  R )   &    |-  U  =  ( G X_s { <. (/) ,  R >. , 
 <. 1o ,  S >. } )   =>    |-  ( ph  ->  T  =  ( `' F  "s  U ) )
 
25-Sep-2023fvpr1o 12925 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( B  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
 
25-Sep-2023fvpr0o 12924 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( A  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
 
25-Sep-2023fnpr2o 12922 Function with a domain of  2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. ,  <. 1o ,  B >. }  Fn  2o )
 
25-Sep-2023df-xps 12887 Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |- 
 X.s 
 =  ( r  e. 
 _V ,  s  e. 
 _V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s )  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )  "s  ( (Scalar `  r
 ) X_s { <. (/) ,  r >. , 
 <. 1o ,  s >. } ) ) )
 
12-Sep-2023pwntru 4228 A slight strengthening of pwtrufal 15488. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
 |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
 
11-Sep-2023pwtrufal 15488 A subset of the singleton  { (/) } cannot be anything other than  (/) or  { (/) }. Removing the double negation would change the meaning, as seen at exmid01 4227. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4225), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
 |-  ( A  C_  { (/) }  ->  -. 
 -.  ( A  =  (/) 
 \/  A  =  { (/)
 } ) )
 
9-Sep-2023mathbox 15224 (This theorem is a dummy placeholder for these guidelines. The label of this theorem, "mathbox", is hard-coded into the Metamath program to identify the start of the mathbox section for web page generation.)

A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm.

For contributors:

By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm.

Guidelines:

Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details.

(Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.)

 |-  ph   =>    |-  ph
 
6-Sep-2023djuexb 7103 The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A B )  e.  _V )
 
3-Sep-2023pwf1oexmid 15490 An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
 
3-Sep-2023pwle2 15489 An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  N  C_ 
 2o )
 
30-Aug-2023isomninn 15521 Omniscience stated in terms of natural numbers. Similar to isomnimap 7196 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 30-Aug-2023.)
 |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
 ) )
 
30-Aug-2023isomninnlem 15520 Lemma for isomninn 15521. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
 ) )
 
28-Aug-2023trilpolemisumle 15528 Lemma for trilpo 15533. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  sum_ i  e.  Z  ( ( 1 
 /  ( 2 ^
 i ) )  x.  ( F `  i
 ) )  <_  sum_ i  e.  Z  ( 1  /  ( 2 ^ i
 ) ) )
 
25-Aug-2023cvgcmp2n 15523 A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  NN )  ->  0  <_  ( G `  k ) )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  <_  ( 1  /  (
 2 ^ k ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  G )  e.  dom  ~~>  )
 
25-Aug-2023cvgcmp2nlemabs 15522 Lemma for cvgcmp2n 15523. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting  (  seq 1
(  +  ,  G
) `  N ) as the sum of  (  seq 1
(  +  ,  G
) `  M ) and a term which gets smaller as  M gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  NN )  ->  0  <_  ( G `  k ) )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  <_  ( 1  /  (
 2 ^ k ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M ) ) )  < 
 ( 2  /  M ) )
 
24-Aug-2023trilpolemclim 15526 Lemma for trilpo 15533. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  G  =  ( n  e.  NN  |->  ( ( 1  /  (
 2 ^ n ) )  x.  ( F `
  n ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  G )  e.  dom  ~~>  )
 
23-Aug-2023trilpo 15533 Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15531 (which means the sequence contains a zero), trilpolemeq1 15530 (which means the sequence is all ones), and trilpolemgt1 15529 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15519) or that the real numbers are a discrete field (see trirec0 15534).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10310 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  om  e. Omni )
 
23-Aug-2023trilpolemres 15532 Lemma for trilpo 15533. The result. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  ( A  <  1  \/  A  =  1  \/  1  <  A ) )   =>    |-  ( ph  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
 
23-Aug-2023trilpolemlt1 15531 Lemma for trilpo 15533. The  A  <  1 case. We can use the distance between  A and one (that is,  1  -  A) to find a position in the sequence  n where terms after that point will not add up to as much as  1  -  A. By finomni 7199 we know the terms up to  n either contain a zero or are all one. But if they are all one that contradicts the way we constructed  n, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  A  <  1
 )   =>    |-  ( ph  ->  E. x  e.  NN  ( F `  x )  =  0
 )
 
23-Aug-2023trilpolemeq1 15530 Lemma for trilpo 15533. The  A  =  1 case. This is proved by noting that if any  ( F `  x
) is zero, then the infinite sum  A is less than one based on the term which is zero. We are using the fact that the  F sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  A  =  1 )   =>    |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1
 )
 
23-Aug-2023trilpolemgt1 15529 Lemma for trilpo 15533. The  1  <  A case. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  -.  1  <  A )
 
23-Aug-2023trilpolemcl 15527 Lemma for trilpo 15533. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  A  e.  RR )
 
23-Aug-2023triap 15519 Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <-> DECID  A #  B ) )
 
19-Aug-2023djuenun 7272 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D ) )
 
16-Aug-2023ctssdclemr 7171 Lemma for ctssdc 7172. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A  /\  A. n  e.  om DECID  n  e.  s ) )
 
16-Aug-2023ctssdclemn0 7169 Lemma for ctssdc 7172. The  -.  (/)  e.  S case. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ph  ->  -.  (/)  e.  S )   =>    |-  ( ph  ->  E. g  g : om -onto-> ( A 1o ) )
 
15-Aug-2023ctssexmid 7209 The decidability condition in ctssdc 7172 is needed. More specifically, ctssdc 7172 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( ( y  C_  om 
 /\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )   &    |-  om  e. Omni   =>    |-  ( ph  \/  -.  ph )
 
15-Aug-2023ctssdc 7172 A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7209. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( E. s ( s  C_  om  /\  E. f  f : s -onto-> A 
 /\  A. n  e.  om DECID  n  e.  s )  <->  E. f  f : om -onto-> ( A 1o )
 )
 
14-Aug-2023mpoexw 6266 Weak version of mpoex 6267 that holds without ax-coll 4144. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  D  e.  _V   &    |-  A. x  e.  A  A. y  e.  B  C  e.  D   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
13-Aug-2023grpinvfvalg 13114 The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
 .+  x )  =  .0.  ) ) )
 
13-Aug-2023ltntri 8147 Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy,  A  <  B  \/  A  =  B  \/  B  <  A. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )
 
13-Aug-2023mptexw 6165 Weak version of mptex 5784 that holds without ax-coll 4144. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
 |-  A  e.  _V   &    |-  C  e.  _V   &    |-  A. x  e.  A  B  e.  C   =>    |-  ( x  e.  A  |->  B )  e.  _V
 
13-Aug-2023funexw 6164 Weak version of funex 5781 that holds without ax-coll 4144. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
 |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )
 
11-Aug-2023qnnen 12588 The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
 |- 
 QQ  ~~  NN
 
10-Aug-2023ctinfomlemom 12584 Lemma for ctinfom 12585. Converting between  om and  NN0. (Contributed by Jim Kingdon, 10-Aug-2023.)
 |-  N  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  G  =  ( F  o.  `' N )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e. 
 om  E. k  e.  om  -.  ( F `  k
 )  e.  ( F
 " n ) )   =>    |-  ( ph  ->  ( G : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
 NN0  A. i  e.  (
 0 ... m ) ( G `  j )  =/=  ( G `  i ) ) )
 
9-Aug-2023difinfsnlem 7158 Lemma for difinfsn 7159. The case where we need to swap  B and  (inr `  (/) ) in building the mapping  G. (Contributed by Jim Kingdon, 9-Aug-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  F : ( om 1o ) -1-1-> A )   &    |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B )   &    |-  G  =  ( n  e.  om  |->  if (
 ( F `  (inl `  n ) )  =  B ,  ( F `
  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )   =>    |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
 
8-Aug-2023difinfinf 7160 An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
 ~<_  ( A  \  B ) )
 
8-Aug-2023difinfsn 7159 An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A 
 \  { B }
 ) )
 
7-Aug-2023ctinf 12587 A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
 |-  ( A  ~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f  f : om -onto-> A  /\  om  ~<_  A ) )
 
7-Aug-2023inffinp1 12586 An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  om  ~<_  A )   &    |-  ( ph  ->  B  C_  A )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  E. x  e.  A  -.  x  e.  B )
 
7-Aug-2023ctinfom 12585 A condition for a set being countably infinite. Restates ennnfone 12582 in terms of  om and function image. Like ennnfone 12582 the condition can be summarized as  A being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
 |-  ( A  ~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
 ( f : om -onto-> A  /\  A. n  e. 
 om  E. k  e.  om  -.  ( f `  k
 )  e.  ( f
 " n ) ) ) )
 
6-Aug-2023rerestcntop 14718 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
6-Aug-2023tgioo2cntop 14717 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( topGen `  ran  (,) )  =  ( Jt  RR )
 
4-Aug-2023nninffeq 15510 Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
 |-  ( ph  ->  F : --> NN0 )   &    |-  ( ph  ->  G : --> NN0 )   &    |-  ( ph  ->  ( F `  ( x  e.  om  |->  1o )
 )  =  ( G `
  ( x  e. 
 om  |->  1o ) ) )   &    |-  ( ph  ->  A. n  e. 
 om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )   =>    |-  ( ph  ->  F  =  G )
 
3-Aug-2023txvalex 14422 Existence of the binary topological product. If  R and 
S are known to be topologies, see txtop 14428. (Contributed by Jim Kingdon, 3-Aug-2023.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S )  e.  _V )
 
3-Aug-2023ablgrpd 13360 An Abelian group is a group, deduction form of ablgrp 13359. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e.  Grp )
 
3-Aug-20231nsgtrivd 13289 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )   =>    |-  ( ph  ->  B  =  {  .0.  } )
 
3-Aug-2023triv1nsgd 13288 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )
 
3-Aug-2023trivnsgd 13287 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  =  { B } )
 
3-Aug-20230idnsgd 13286 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  { {  .0.  } ,  B }  C_  (NrmSGrp `  G )
 )
 
3-Aug-2023trivsubgsnd 13271 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (SubGrp `  G )  =  { B } )
 
3-Aug-2023trivsubgd 13270 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   &    |-  ( ph  ->  A  e.  (SubGrp `  G )
 )   =>    |-  ( ph  ->  A  =  B )
 
3-Aug-2023mulgcld 13214 Deduction associated with mulgcl 13209. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
3-Aug-2023hashfingrpnn 13108 A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
3-Aug-2023hashfinmndnn 13013 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
3-Aug-2023dvdsgcdidd 12131 The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  ||  N )   =>    |-  ( ph  ->  ( M  gcd  N )  =  M )
 
3-Aug-2023gcdmultipled 12130 The greatest common divisor of a nonnegative integer  M and a multiple of it is  M itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  ( N  x.  M ) )  =  M )
 
3-Aug-2023fihashelne0d 10868 A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  -.  ( `  A )  =  0 )
 
3-Aug-2023phpeqd 6989 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6921 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B 
 C_  A )   &    |-  ( ph  ->  A  ~~  B )   =>    |-  ( ph  ->  A  =  B )
 
3-Aug-2023enpr2d 6871 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  { A ,  B }  ~~  2o )
 
3-Aug-2023elrnmpt2d 4917 Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  C  e.  ran 
 F )   =>    |-  ( ph  ->  E. x  e.  A  C  =  B )
 
3-Aug-2023elrnmptdv 4916 Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  V )   &    |-  (
 ( ph  /\  x  =  C )  ->  D  =  B )   =>    |-  ( ph  ->  D  e.  ran  F )
 
3-Aug-2023rspcime 2871 Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ( ph  /\  x  =  A )  ->  ps )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
3-Aug-2023neqcomd 2198 Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  -.  B  =  A )
 
2-Aug-2023dvid 14847 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( CC  _D  (  _I  |`  CC ) )  =  ( CC  X.  { 1 } )
 
2-Aug-2023dvconst 14846 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A }
 ) )  =  ( CC  X.  { 0 } ) )
 
2-Aug-2023dvidlemap 14845 Lemma for dvid 14847 and dvconst 14846. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  F : CC --> CC )   &    |-  (
 ( ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( CC  _D  F )  =  ( CC  X.  { B }
 ) )
 
2-Aug-2023diveqap1bd 8855 If two complex numbers are equal, their quotient is one. One-way deduction form of diveqap1 8724. Converse of diveqap1d 8817. (Contributed by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  /  B )  =  1 )
 
31-Jul-2023mul0inf 11384 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11206 and mulap0bd 8676 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
 
31-Jul-2023mul0eqap 8689 If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   &    |-  ( ph  ->  ( A  x.  B )  =  0
 )   =>    |-  ( ph  ->  ( A  =  0  \/  B  =  0 )
 )
 
31-Jul-2023apcon4bid 8643 Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A #  B  <->  C #  D )
 )   =>    |-  ( ph  ->  ( A  =  B  <->  C  =  D ) )
 
30-Jul-2023uzennn 10507 An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( M  e.  ZZ  ->  ( ZZ>= `  M )  ~~  NN )
 
30-Jul-2023djuen 7271 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A C ) 
 ~~  ( B D ) )
 
30-Jul-2023endjudisj 7270 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A B )  ~~  ( A  u.  B ) )
 
30-Jul-2023eninr 7157 Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( A  e.  V  ->  (inr " A )  ~~  A )
 
30-Jul-2023eninl 7156 Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( A  e.  V  ->  (inl " A )  ~~  A )
 
29-Jul-2023exmidunben 12583 If any unbounded set of positive integers is equinumerous to  NN, then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
 |-  ( ( A. x ( ( x  C_  NN  /\  A. m  e. 
 NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  -> EXMID )
 
29-Jul-2023exmidsssnc 4232 Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4227 but lets you choose any set as the element of the singleton rather than just  (/). It is similar to exmidsssn 4231 but for a particular set  B rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
 |-  ( B  e.  V  ->  (EXMID  <->  A. x ( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } )
 ) ) )
 
28-Jul-2023dvfcnpm 14844 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC 
 _D  F ) --> CC )
 
28-Jul-2023dvfpm 14843 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR 
 _D  F ) --> CC )
 
24-Jul-2023sraring 13945 Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.)
 |-  A  =  ( (subringAlg  `  R ) `  V )   &    |-  B  =  ( Base `  R )   =>    |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  A  e.  Ring )
 
23-Jul-2023ennnfonelemhdmp1 12566 Lemma for ennnfone 12582. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   &    |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
 " ( `' N `  P ) ) )   =>    |-  ( ph  ->  dom  ( H `
  ( P  +  1 ) )  = 
 suc  dom  ( H `  P ) )
 
23-Jul-2023ennnfonelemp1 12563 Lemma for ennnfone 12582. Value of  H at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `
  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
  P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
 
22-Jul-2023nntr2 6556 Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
 |-  ( ( A  e.  om 
 /\  C  e.  om )  ->  ( ( A 
 C_  B  /\  B  e.  C )  ->  A  e.  C ) )
 
22-Jul-2023nnsssuc 6555 A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  A  e.  suc  B ) )
 
22-Jul-2023relopabiv 4785 A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopabi 4787. (Contributed by BJ, 22-Jul-2023.)
 |-  A  =  { <. x ,  y >.  |  ph }   =>    |-  Rel 
 A
 
21-Jul-2023ennnfoneleminc 12568 Lemma for ennnfone 12582. We only add elements to  H as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   &    |-  ( ph  ->  Q  e.  NN0 )   &    |-  ( ph  ->  P 
 <_  Q )   =>    |-  ( ph  ->  ( H `  P )  C_  ( H `  Q ) )
 
20-Jul-2023ennnfonelemg 12560 Lemma for ennnfone 12582. Closure for  G. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ( ph  /\  (
 f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } 
 /\  j  e.  om ) )  ->  ( f G j )  e. 
 { g  e.  ( A  ^pm  om )  | 
 dom  g  e.  om } )
 
20-Jul-2023ennnfonelemjn 12559 Lemma for ennnfone 12582. Non-initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ( ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
 
20-Jul-2023ennnfonelemj0 12558 Lemma for ennnfone 12582. Initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  ( J `  0 )  e. 
 { g  e.  ( A  ^pm  om )  | 
 dom  g  e.  om } )
 
20-Jul-2023seqp1cd 10541 Value of the sequence builder function at a successor. A version of seq3p1 10536 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1
 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
20-Jul-2023seqovcd 10538 A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10539 and seq1cd 10540 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  C )
 
19-Jul-2023ennnfonelemhom 12572 Lemma for ennnfone 12582. The sequences in  H increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  M  e.  om )   =>    |-  ( ph  ->  E. i  e.  NN0  M  e.  dom  ( H `  i ) )
 
19-Jul-2023ennnfonelemex 12571 Lemma for ennnfone 12582. Extending the sequence  ( H `  P ) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  E. i  e.  NN0  dom  ( H `  P )  e.  dom  ( H `  i ) )
 
19-Jul-2023ennnfonelemkh 12569 Lemma for ennnfone 12582. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) )
 
19-Jul-2023ennnfonelemom 12565 Lemma for ennnfone 12582. 
H yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  dom  ( H `  P )  e. 
 om )
 
19-Jul-2023ennnfonelem1 12564 Lemma for ennnfone 12582. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  ( H `  1 )  =  { <. (/) ,  ( F `
  (/) ) >. } )
 
19-Jul-2023seq1cd 10540 Initial value of the recursive sequence builder. A version of seq3-1 10533 which provides two classes 
D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
17-Jul-2023ennnfonelemhf1o 12570 Lemma for ennnfone 12582. Each of the functions in  H is one to one and onto an image of  F. (Contributed by Jim Kingdon, 17-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  ( H `  P ) : dom  ( H `  P ) -1-1-onto-> ( F " ( `' N `  P ) ) )
 
16-Jul-2023ennnfonelemen 12578 Lemma for ennnfone 12582. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  L  =  U_ i  e.  NN0  ( H `  i )   =>    |-  ( ph  ->  A  ~~ 
 NN )
 
16-Jul-2023ennnfonelemdm 12577 Lemma for ennnfone 12582. The function  L is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  L  =  U_ i  e.  NN0  ( H `  i )   =>    |-  ( ph  ->  dom  L  =  om )
 
16-Jul-2023ennnfonelemrn 12576 Lemma for ennnfone 12582. 
L is onto  A. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  L  =  U_ i  e.  NN0  ( H `  i )   =>    |-  ( ph  ->  ran  L  =  A )
 
16-Jul-2023ennnfonelemf1 12575 Lemma for ennnfone 12582. 
L is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  L  =  U_ i  e.  NN0  ( H `  i )   =>    |-  ( ph  ->  L : dom  L -1-1-> A )
 
16-Jul-2023ennnfonelemfun 12574 Lemma for ennnfone 12582. 
L is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  L  =  U_ i  e.  NN0  ( H `  i )   =>    |-  ( ph  ->  Fun  L )
 
16-Jul-2023ennnfonelemrnh 12573 Lemma for ennnfone 12582. A consequence of ennnfonelemss 12567. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  X  e.  ran  H )   &    |-  ( ph  ->  Y  e.  ran  H )   =>    |-  ( ph  ->  ( X  C_  Y  \/  Y  C_  X ) )
 
15-Jul-2023ennnfonelemss 12567 Lemma for ennnfone 12582. We only add elements to  H as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  ( H `  P )  C_  ( H `  ( P  +  1 ) ) )
 
15-Jul-2023ennnfonelem0 12562 Lemma for ennnfone 12582. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  ( H `  0 )  =  (/) )
 
15-Jul-2023ennnfonelemk 12557 Lemma for ennnfone 12582. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  K  e.  om )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  A. j  e.  suc  N ( F `
  K )  =/=  ( F `  j
 ) )   =>    |-  ( ph  ->  N  e.  K )
 
15-Jul-2023ennnfonelemdc 12556 Lemma for ennnfone 12582. A direct consequence of fidcenumlemrk 7013. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  P  e.  om )   =>    |-  ( ph  -> DECID  ( F `
  P )  e.  ( F " P ) )
 
14-Jul-2023djur 7128 A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
 |-  ( C  e.  ( A B )  <->  ( E. x  e.  A  C  =  (inl `  x )  \/  E. x  e.  B  C  =  (inr `  x )
 ) )
 
13-Jul-2023sbthomlem 15515 Lemma for sbthom 15516. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.)
 |-  ( ph  ->  om  e. Omni )   &    |-  ( ph  ->  Y  C_  { (/) } )   &    |-  ( ph  ->  F : om -1-1-onto-> ( Y om ) )   =>    |-  ( ph  ->  ( Y  =  (/)  \/  Y  =  { (/) } ) )
 
12-Jul-2023caseinr 7151 Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A ) )
 
12-Jul-2023inl11 7124 Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A )  =  (inl `  B )  <->  A  =  B ) )
 
11-Jul-2023djudomr 7280 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )
 
11-Jul-2023djudoml 7279 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
 
11-Jul-2023omp1eomlem 7153 Lemma for omp1eom 7154. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  F  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl ` 
 U. x ) ) )   &    |-  S  =  ( x  e.  om  |->  suc 
 x )   &    |-  G  = case ( S ,  (  _I  |` 
 1o ) )   =>    |-  F : om -1-1-onto-> ( om 1o )
 
11-Jul-2023xp01disjl 6487 Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  C ) )  =  (/)
 
10-Jul-2023sbthom 15516 Schroeder-Bernstein is not possible even for  om. We know by exmidsbth 15514 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is  om? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
 |-  (
 ( A. x ( ( x  ~<_  om  /\  om  ~<_  x ) 
 ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )
 
10-Jul-2023endjusym 7155 Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B ) 
 ~~  ( B A ) )
 
10-Jul-2023omp1eom 7154 Adding one to  om. (Contributed by Jim Kingdon, 10-Jul-2023.)
 |-  ( om 1o )  ~~  om
 
9-Jul-2023refeq 15518 Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  F : RR --> RR )   &    |-  ( ph  ->  G : RR --> RR )   &    |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )   &    |-  ( ph  ->  A. x  e. 
 RR  ( 0  < 
 x  ->  ( F `  x )  =  ( G `  x ) ) )   &    |-  ( ph  ->  ( F `  0 )  =  ( G `  0 ) )   =>    |-  ( ph  ->  F  =  G )
 
9-Jul-2023seqvalcd 10532 Value of the sequence builder function. Similar to seq3val 10531 but the classes  D (type of each term) and  C (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
9-Jul-2023djuun 7126 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
 |-  ( (inl " A )  u.  (inr " B ) )  =  ( A B )
 
9-Jul-2023djuin 7123 The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
 |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
 
8-Jul-2023limcimo 14819 Conditions which ensure there is at most one limit value of  F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  ( Kt  S ) )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   =>    |-  ( ph  ->  E* x  x  e.  ( F lim CC  B ) )
 
8-Jul-2023ennnfonelemh 12561 Lemma for ennnfone 12582. (Contributed by Jim Kingdon, 8-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  H : NN0 --> ( A  ^pm  om ) )
 
7-Jul-2023seqf2 10539 Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
 
6-Jul-2023sbbidv 1896 Deduction substituting both sides of a biconditional, with  ph and  x disjoint. See also sbbid 1857. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( [ t  /  x ] ps  <->  [ t  /  x ] ch ) )
 
3-Jul-2023limcimolemlt 14818 Lemma for limcimo 14819. (Contributed by Jim Kingdon, 3-Jul-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  ( Kt  S ) )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  X  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  Y  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
 z  -  B ) )  <  D ) 
 ->  ( abs `  (
 ( F `  z
 )  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  / 
 2 ) ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  G )  ->  ( abs `  ( ( F `  w )  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  / 
 2 ) ) )   =>    |-  ( ph  ->  ( abs `  ( X  -  Y ) )  <  ( abs `  ( X  -  Y ) ) )
 
28-Jun-2023dvfgg 14842 Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC 
 ^pm  S ) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
 
28-Jun-2023dvbsssg 14840 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S ) ) 
 ->  dom  ( S  _D  F )  C_  S )
 
27-Jun-2023dvbssntrcntop 14838 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  dom  ( S  _D  F )  C_  ( ( int `  J ) `  A ) )
 
27-Jun-2023eldvap 14836 The differentiable predicate. A function  F is differentiable at  B with derivative  C iff  F is defined in a neighborhood of  B and the difference quotient has limit  C at  B. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  T  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  G  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  /  ( z  -  B ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ph  ->  ( B ( S  _D  F ) C  <->  ( B  e.  ( ( int `  T ) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
 
27-Jun-2023dvfvalap 14835 Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  T  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( ( S  _D  F )  = 
 U_ x  e.  (
 ( int `  T ) `  A ) ( { x }  X.  (
 ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) ) ) lim
 CC  x ) ) 
 /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A )  X.  CC ) ) )
 
27-Jun-2023dvlemap 14834 Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  ( ph  ->  F : D --> CC )   &    |-  ( ph  ->  D  C_  CC )   &    |-  ( ph  ->  B  e.  D )   =>    |-  ( ( ph  /\  A  e.  { w  e.  D  |  w #  B }
 )  ->  ( (
 ( F `  A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
 
25-Jun-2023reldvg 14833 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
 |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S ) ) 
 ->  Rel  ( S  _D  F ) )
 
25-Jun-2023df-dvap 14811 Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set  s here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of  CC and is well-behaved when  s contains no isolated points, we will restrict our attention to the cases  s  =  RR or  s  =  CC for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
 |- 
 _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
 ( MetOpen `  ( abs  o. 
 -  ) )t  s ) ) `  dom  f
 ) ( { x }  X.  ( ( z  e.  { w  e. 
 dom  f  |  w #  x }  |->  ( ( ( f `  z
 )  -  ( f `
  x ) ) 
 /  ( z  -  x ) ) ) lim
 CC  x ) ) )
 
18-Jun-2023limccnpcntop 14829 If the limit of  F at  B is  C and  G is continuous at  C, then the limit of  G  o.  F at  B is  G ( C ). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
 |-  ( ph  ->  F : A --> D )   &    |-  ( ph  ->  D  C_  CC )   &    |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  D )   &    |-  ( ph  ->  C  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  G  e.  (
 ( J  CnP  K ) `  C ) )   =>    |-  ( ph  ->  ( G `  C )  e.  (
 ( G  o.  F ) lim CC  B ) )
 
18-Jun-2023r19.30dc 2641 Restricted quantifier version of 19.30dc 1638. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps )  /\ DECID  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  \/  E. x  e.  A  ps ) )
 
17-Jun-2023r19.28v 2622 Restricted quantifier version of one direction of 19.28 1574. (The other direction holds when  A is inhabited, see r19.28mv 3539.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
 |-  ( ( ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\  ps )
 )
 
17-Jun-2023r19.27v 2621 Restricted quantitifer version of one direction of 19.27 1572. (The other direction holds when  A is inhabited, see r19.27mv 3543.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
 |-  ( ( A. x  e.  A  ph  /\  ps )  ->  A. x  e.  A  ( ph  /\  ps )
 )
 
16-Jun-2023cnlimcim 14825 If  F is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
 |-  ( A  C_  CC  ->  ( F  e.  ( A -cn-> CC )  ->  ( F : A --> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
 
16-Jun-2023cncfcn1cntop 14749 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( CC -cn-> CC )  =  ( J  Cn  J )
 
14-Jun-2023cnplimcim 14821 If a function is continuous at  B, its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   =>    |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B ) 
 ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
 
14-Jun-2023metcnpd 14688 Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by Jim Kingdon, 14-Jun-2023.)
 |-  ( ph  ->  J  =  ( MetOpen `  C )
 )   &    |-  ( ph  ->  K  =  ( MetOpen `  D )
 )   &    |-  ( ph  ->  C  e.  ( *Met `  X ) )   &    |-  ( ph  ->  D  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  P  e.  X )   =>    |-  ( ph  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X
 --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
6-Jun-2023cntoptop 14701 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  Top
 
6-Jun-2023cntoptopon 14700 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  (TopOn `  CC )
 
3-Jun-2023limcdifap 14816 It suffices to consider functions which are not defined at  B to define the limit of a function. In particular, the value of the original function  F at  B does not affect the limit of  F. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   =>    |-  ( ph  ->  ( F lim CC  B )  =  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B ) )
 
3-Jun-2023ellimc3ap 14815 Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
 y )  ->  ( abs `  ( ( F `
  z )  -  C ) )  < 
 x ) ) ) )
 
3-Jun-2023df-limced 14810 Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
 |- lim
 CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e. 
 CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  ( x  e.  CC  /\ 
 A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
 d )  ->  ( abs `  ( ( f `
  z )  -  y ) )  < 
 e ) ) ) } )
 
30-May-2023modprm1div 12385 A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( ( A 
 mod  P )  =  1  <->  P  ||  ( A  -  1 ) ) )
 
30-May-2023modm1div 11943 An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
 |-  ( ( N  e.  ( ZZ>= `  2 )  /\  A  e.  ZZ )  ->  ( ( A  mod  N )  =  1  <->  N  ||  ( A  -  1 ) ) )
 
30-May-2023eluz4nn 9633 An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.)
 |-  ( X  e.  ( ZZ>=
 `  4 )  ->  X  e.  NN )
 
30-May-2023eluz4eluz2 9632 An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.)
 |-  ( X  e.  ( ZZ>=
 `  4 )  ->  X  e.  ( ZZ>= `  2 ) )
 
29-May-2023mulcncflem 14761 Lemma for mulcncf 14762. (Contributed by Jim Kingdon, 29-May-2023.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   &    |-  ( ph  ->  V  e.  X )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  S  e.  RR+ )   &    |-  ( ph  ->  T  e.  RR+ )   &    |-  ( ph  ->  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  S  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `  u )  -  ( ( x  e.  X  |->  A ) `
  V ) ) )  <  F ) )   &    |-  ( ph  ->  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  T  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `  u )  -  ( ( x  e.  X  |->  B ) `
  V ) ) )  <  G ) )   &    |-  ( ph  ->  A. u  e.  X  ( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ V  /  x ]_ A ) )  <  F  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ V  /  x ]_ B ) )  <  G )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ V  /  x ]_ A  x.  [_ V  /  x ]_ B ) ) )  <  E ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  d  ->  ( abs `  ( ( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  ( ( x  e.  X  |->  ( A  x.  B ) ) `
  V ) ) )  <  E ) )
 
26-May-2023cdivcncfap 14758 Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
 |-  F  =  ( x  e.  { y  e. 
 CC  |  y #  0 }  |->  ( A  /  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn->
 CC ) )
 
26-May-2023reccn2ap 11456 The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2193. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
 |-  T  =  (inf ( { 1 ,  (
 ( abs `  A )  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )   =>    |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( (
 1  /  z )  -  ( 1  /  A ) ) )  <  B ) )
 
23-May-2023iooretopg 14696 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  e.  ( topGen `  ran  (,) ) )
 
23-May-2023minclpr 11380 The minimum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9361 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B } 
 <->  ( A  <_  B  \/  B  <_  A )
 ) )
 
22-May-2023qtopbasss 14689 The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  S  C_  RR*   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S )   =>    |-  ( (,) " ( S  X.  S ) )  e.  TopBases
 
22-May-2023iooinsup 11420 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A (,) B )  i^i  ( C (,) D ) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
 ) )
 
21-May-2023df-sumdc 11497 Define the sum of a series with an index set of integers  A. The variable  k is normally a free variable in  B, i.e.,  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 } k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11665). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
 |- 
 sum_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
 ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  x  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m ) ) ) )
 
19-May-2023bdmopn 14672 The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   &    |-  J  =  ( MetOpen `  C )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  ( MetOpen `  D )
 )
 
19-May-2023bdbl 14671 The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D ) S )  =  ( P ( ball `  C ) S ) )
 
19-May-2023bdmet 14670 The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
 
19-May-2023xrminltinf 11415 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  <  A ) ) )
 
19-May-2023clel5 2897 Alternate definition of class membership: a class  X is an element of another class  A iff there is an element of  A equal to  X. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
 |-  ( X  e.  A  <->  E. x  e.  A  X  =  x )
 
18-May-2023xrminrecl 11416 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR* ,  <  )  = inf ( { A ,  B } ,  RR ,  <  )
 )
 
18-May-2023ralnex2 2633 Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.)
 |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  -.  E. x  e.  A  E. y  e.  B  ph )
 
17-May-2023bdtrilem 11382 Lemma for bdtri 11383. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (
 ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C ) ) ) 
 <_  ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
 
15-May-2023xrbdtri 11419 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  ) 
 <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
15-May-2023bdtri 11383 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( {
 ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
 ) )
 
15-May-2023minabs 11379 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
13-May-2023kerf1ghm 13344 A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N } ) )
 
13-May-2023f1ghm0to0 13342 If a group homomorphism  F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( ( F  e.  ( R  GrpHom  S ) 
 /\  F : A -1-1-> B 
 /\  X  e.  A )  ->  ( ( F `
  X )  =  .0.  <->  X  =  N ) )
 
11-May-2023xrmaxadd 11404 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
11-May-2023xrmaxaddlem 11403 Lemma for xrmaxadd 11404. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR*
 ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
10-May-2023xrminadd 11418 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  -> inf ( {
 ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
10-May-2023xrmaxlesup 11402 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  ) 
 <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
10-May-2023xrltmaxsup 11400 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( C  <  A  \/  C  <  B ) ) )
 
9-May-2023bdxmet 14669 The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X ) )
 
9-May-2023bdmetval 14668 Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C : ( X  X.  X ) --> RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  ) )
 
7-May-2023setsmstsetg 14649 The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  ( MetOpen `  D )  =  (TopSet `  K ) )
 
6-May-2023dsslid 12830 Slot property of  dist. (Contributed by Jim Kingdon, 6-May-2023.)
 |-  ( dist  = Slot  ( dist ` 
 ndx )  /\  ( dist `  ndx )  e. 
 NN )
 
6-May-2023eqabdv 2322 Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Revised by Wolf Lammen, 6-May-2023.)
 |-  ( ph  ->  ( x  e.  A  <->  ps ) )   =>    |-  ( ph  ->  A  =  { x  |  ps } )
 
5-May-2023mopnrel 14609 The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
 |- 
 Rel  MetOpen
 
5-May-2023fsumsersdc 11538 Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq M (  +  ,  F ) `  N ) )
 
4-May-2023blex 14555 A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e.  _V )
 
4-May-2023summodc 11526 A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) , 
 [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x )  \/  E. m  e.  NN  E. f
 ( f : ( 1 ... m ) -1-1-onto-> A 
 /\  x  =  ( 
 seq 1 (  +  ,  G ) `  m ) ) ) )
 
4-May-2023summodclem2 11525 Lemma for summodc 11526. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  y  =  ( 
 seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y ) )
 
4-May-2023xrminrpcl 11417 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
 
4-May-2023xrlemininf 11414 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <_  B 
 /\  A  <_  C ) ) )
 
3-May-2023xrltmininf 11413 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B 
 /\  A  <  C ) ) )
 
3-May-2023xrmineqinf 11412 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  B )
 
3-May-2023xrmin2inf 11411 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  B )
 
3-May-2023xrmin1inf 11410 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  A )
 
3-May-2023xrmincl 11409 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
2-May-2023xrminmax 11408 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
 
2-May-2023xrnegcon1d 11407 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
 
2-May-2023infxrnegsupex 11406 The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )   &    |-  ( ph  ->  A 
 C_  RR* )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
 
2-May-2023xrnegiso 11405 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  F  =  ( x  e.  RR*  |->  -e
 x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' F  =  F )
 
30-Apr-2023xrmaxltsup 11401 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
30-Apr-2023xrmaxrecl 11398 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
 
30-Apr-2023xrmax2sup 11397 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
30-Apr-2023xrmax1sup 11396 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
29-Apr-2023xrmaxcl 11395 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
29-Apr-2023xrmaxiflemval 11393 Lemma for xrmaxif 11394. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\ 
 A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  <  M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
 
29-Apr-2023xrmaxiflemcom 11392 Lemma for xrmaxif 11394. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
 
29-Apr-2023xrmaxiflemcl 11388 Lemma for xrmaxif 11394. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
 
29-Apr-2023sbco2v 1964 Version of sbco2 1981 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
28-Apr-2023xrmaxiflemlub 11391 Lemma for xrmaxif 11394. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )   =>    |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
 
26-Apr-2023xrmaxif 11394 Maximum of two extended reals in terms of  if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) ) )
 
26-Apr-2023xrmaxiflemab 11390 Lemma for xrmaxif 11394. A variation of xrmaxleim 11387- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) )  =  B )
 
26-Apr-2023xrmaxifle 11389 An upper bound for  { A ,  B } in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
 
25-Apr-2023xrmaxleim 11387 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
 
25-Apr-2023rpmincl 11381 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
25-Apr-2023mincl 11374 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR )
 
24-Apr-2023psmetrel 14490 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
 |- 
 Rel PsMet

  Copyright terms: Public domain W3C HTML validation [external]