Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 29-Jan-2026 at 7:07 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
20-Jan-2026cats1fvd 11264 A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  ( `  S )  =  M )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( ph  ->  ( S `  N )  =  Y )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( T `  N )  =  Y )
 
20-Jan-2026cats1fvnd 11263 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( `  S )  =  M )   =>    |-  ( ph  ->  ( T `  M )  =  X )
 
19-Jan-2026cats2catd 11267 Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  ( ph  ->  B  e. Word  _V )   &    |-  ( ph  ->  D  e. Word  _V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  W )   &    |-  ( ph  ->  A  =  ( B ++  <" X "> ) )   &    |-  ( ph  ->  C  =  (
 <" Y "> ++  D ) )   =>    |-  ( ph  ->  ( A ++  C )  =  ( ( B ++  <" X Y "> ) ++  D ) )
 
19-Jan-2026cats1catd 11266 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  A  e. Word  _V )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( ph  ->  C  =  ( B ++  <" X "> ) )   &    |-  ( ph  ->  B  =  ( A ++  S ) )   =>    |-  ( ph  ->  C  =  ( A ++  T ) )
 
19-Jan-2026cats1lend 11265 The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( `  S )  =  M   &    |-  ( M  +  1 )  =  N   =>    |-  ( ph  ->  ( `  T )  =  N )
 
18-Jan-2026rexanaliim 2616 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Revised by Jim Kingdon, 18-Jan-2026.)
 |-  ( E. x  e.  A  ( ph  /\  -.  ps )  ->  -.  A. x  e.  A  ( ph  ->  ps ) )
 
15-Jan-2026df-uspgren 15918 Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph or a special undirected simple hypergraph, consisting of a set  v (of "vertices") and an injective (one-to-one) function  e (representing (indexed) "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by Jim Kingdon, 15-Jan-2026.)
 |- USPGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
 
11-Jan-2026en2prde 7334 A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.)
 |-  ( V  ~~  2o  ->  E. a E. b
 ( a  =/=  b  /\  V  =  { a ,  b } ) )
 
10-Jan-2026pw1mapen 16273 Equinumerosity of  ( ~P 1o  ^m  A ) and the set of subsets of  A. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( A  e.  V  ->  ( ~P 1o  ^m  A )  ~~  ~P A )
 
10-Jan-2026pw1if 7378 Expressing a truth value in terms of an  if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( A  e.  ~P 1o  ->  if ( A  =  1o ,  1o ,  (/) )  =  A )
 
10-Jan-2026pw1m 7377 A truth value which is inhabited is equal to true. This is a variation of pwntru 4262 and pwtrufal 16274. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( ( A  e.  ~P 1o  /\  E. x  x  e.  A )  ->  A  =  1o )
 
10-Jan-20261ndom2 6994 Two is not dominated by one. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |- 
 -.  2o  ~<_  1o
 
9-Jan-2026pw1map 16272 Mapping between  ( ~P 1o  ^m  A ) and subsets of  A. (Contributed by Jim Kingdon, 9-Jan-2026.)
 |-  F  =  ( s  e.  ( ~P 1o  ^m  A ) 
 |->  { z  e.  A  |  ( s `  z
 )  =  1o }
 )   =>    |-  ( A  e.  V  ->  F : ( ~P 1o  ^m  A ) -1-1-onto-> ~P A )
 
9-Jan-2026iftrueb01 7376 Using an  if expression to represent a truth value by  (/) or  1o. Unlike some theorems using  if,  ph does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
 |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )
 
8-Jan-2026pfxclz 11177 Closure of the prefix extractor. This extends pfxclg 11176 from  NN0 to  ZZ (negative lengths are trivial, resulting in the empty word). (Contributed by Jim Kingdon, 8-Jan-2026.)
 |-  ( ( S  e. Word  A 
 /\  L  e.  ZZ )  ->  ( S prefix  L )  e. Word  A )
 
8-Jan-2026fnpfx 11175 The domain of the prefix extractor. (Contributed by Jim Kingdon, 8-Jan-2026.)
 |- prefix  Fn  ( _V  X.  NN0 )
 
7-Jan-2026pr1or2 7335 An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\ DECID  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
 
6-Jan-2026upgr1elem1 15885 Lemma for upgr1edc 15886. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.)
 |-  ( ph  ->  { B ,  C }  e.  S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  -> DECID  B  =  C )   =>    |-  ( ph  ->  { { B ,  C } }  C_  { x  e.  S  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
3-Jan-2026dom1o 16266 Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  e.  V  ->  ( 1o  ~<_  A  <->  E. j  j  e.  A ) )
 
3-Jan-2026df-umgren 15859 Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
 |- UMGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }
 
3-Jan-2026df-upgren 15858 Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15859). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
 |- UPGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~ 
 1o  \/  x  ~~  2o ) } }
 
3-Jan-2026en2m 6944 A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  ~~  2o  ->  E. x  x  e.  A )
 
3-Jan-2026en1m 6927 A set with one element is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  ~~  1o  ->  E. x  x  e.  A )
 
31-Dec-2025pw0ss 15848 There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
 |- 
 { s  e.  ~P (/) 
 |  E. j  j  e.  s }  =  (/)
 
31-Dec-2025df-ushgrm 15835 Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function  e is an injective (one-to-one) function into subsets of the set of vertices  v, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.)
 |- USHGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s } }
 
29-Dec-2025df-uhgrm 15834 Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.)
 |- UHGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { s  e.  ~P v  |  E. j  j  e.  s } }
 
29-Dec-2025iedgex 15785 Applying the indexed edge function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
 |-  ( G  e.  V  ->  (iEdg `  G )  e.  _V )
 
29-Dec-2025vtxex 15784 Applying the vertex function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
 |-  ( G  e.  V  ->  (Vtx `  G )  e.  _V )
 
29-Dec-2025snmb 3767 A singleton is inhabited iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.)
 |-  ( A  e.  _V  <->  E. x  x  e.  { A } )
 
27-Dec-2025lswex 11089 Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11086 or lswcl 11088 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  e.  _V )
 
23-Dec-2025fzowrddc 11145 Decidability of whether a range of integers is a subset of a word's domain. (Contributed by Jim Kingdon, 23-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  F  e.  ZZ  /\  L  e.  ZZ )  -> DECID  ( F..^ L )  C_  dom 
 S )
 
19-Dec-2025ccatclab 11095 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  ( A  u.  B ) )
 
18-Dec-2025lswwrd 11084 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  =  ( W `  (
 ( `  W )  -  1 ) ) )
 
14-Dec-20252strstrndx 13117 A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 14-Dec-2025.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
12-Dec-2025funiedgdm2vald 15798 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 12-Dec-2025.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  Fun  ( G  \  { (/) } ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { A ,  B }  C_ 
 dom  G )   =>    |-  ( ph  ->  (iEdg `  G )  =  (.ef `  G ) )
 
11-Dec-2025funvtxdm2vald 15797 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  Fun  ( G  \  { (/) } ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { A ,  B }  C_ 
 dom  G )   =>    |-  ( ph  ->  (Vtx `  G )  =  (
 Base `  G ) )
 
11-Dec-2025funiedgdm2domval 15796 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  2o 
 ~<_  dom  G )  ->  (iEdg `  G )  =  (.ef `  G )
 )
 
11-Dec-2025funvtxdm2domval 15795 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  2o 
 ~<_  dom  G )  ->  (Vtx `  G )  =  ( Base `  G )
 )
 
4-Dec-2025hash2en 11032 Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.)
 |-  ( V  ~~  2o  <->  ( V  e.  Fin  /\  ( `  V )  =  2 ) )
 
30-Nov-2025nninfnfiinf 16300 An element of ℕ which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
 |-  (
 ( A  e.  /\  -.  E. n  e.  om  A  =  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  A  =  ( i  e.  om  |->  1o ) )
 
27-Nov-2025psrelbasfi 14605 Simpler form of psrelbas 14604 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : ( NN0  ^m  I
 ) --> K )
 
26-Nov-2025mplsubgfileminv 14629 Lemma for mplsubgfi 14630. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  N  =  ( invg `  S )   =>    |-  ( ph  ->  ( N `  X )  e.  U )
 
26-Nov-2025mplsubgfilemcl 14628 Lemma for mplsubgfi 14630. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  U )   &    |- 
 .+  =  ( +g  `  S )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  U )
 
25-Nov-2025nninfinfwlpo 7315 The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7268). (Contributed by Jim Kingdon, 25-Nov-2025.)
 |-  ( A. x  e. DECID  x  =  (
 i  e.  om  |->  1o )  <->  om  e. WOmni )
 
23-Nov-2025psrbagfi 14602 A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  Fin  ->  D  =  ( NN0  ^m  I ) )
 
22-Nov-2025df-acnm 7320 Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
 |- AC  A  =  { x  |  ( A  e.  _V  /\ 
 A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y
 )  e.  ( f `
  y ) ) }
 
21-Nov-2025mplsubgfilemm 14627 Lemma for mplsubgfi 14630. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  E. j  j  e.  U )
 
14-Nov-20252omapen 16271 Equinumerosity of  ( 2o  ^m  A ) and the set of decidable subsets of  A. (Contributed by Jim Kingdon, 14-Nov-2025.)
 |-  ( A  e.  V  ->  ( 2o  ^m  A ) 
 ~~  { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x }
 )
 
12-Nov-20252omap 16270 Mapping between  ( 2o  ^m  A ) and decidable subsets of  A. (Contributed by Jim Kingdon, 12-Nov-2025.)
 |-  F  =  ( s  e.  ( 2o  ^m  A )  |->  { z  e.  A  |  ( s `  z
 )  =  1o }
 )   =>    |-  ( A  e.  V  ->  F : ( 2o 
 ^m  A ) -1-1-onto-> { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
 
11-Nov-2025domomsubct 16278 A set dominated by  om is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
 |-  ( A 
 ~<_  om  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A ) )
 
10-Nov-2025prdsbaslemss 13273 Lemma for prdsbas 13275 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  A  =  ( E `
  P )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e.  NN   &    |-  ( ph  ->  T  e.  X )   &    |-  ( ph  ->  { <. ( E `
  ndx ) ,  T >. }  C_  P )   =>    |-  ( ph  ->  A  =  T )
 
5-Nov-2025fnmpl 14622 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
 |- mPoly  Fn  ( _V  X.  _V )
 
4-Nov-2025mplelbascoe 14621 Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( X  e.  U  <->  ( X  e.  B  /\  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  ( X `  b )  =  .0.  ) ) ) )
 
4-Nov-2025mplbascoe 14620 Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  (
 a `  k )  <  ( b `  k
 )  ->  ( f `  b )  =  .0.  ) } )
 
4-Nov-2025mplvalcoe 14619 Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  (
 f `  b )  =  .0.  ) }   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
 
1-Nov-2025ficardon 7329 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
 |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
 
31-Oct-2025bitsdc 12424 Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> DECID  M  e.  (bits `  N ) )
 
28-Oct-2025nn0maxcl 11702 The maximum of two nonnegative integers is a nonnegative integer. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  NN0 )
 
28-Oct-2025qdcle 10433 Rational  <_ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  <_  B )
 
17-Oct-2025plycoeid3 15396 Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
 |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  ( A "
 ( ZZ>= `  ( D  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... D ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )   &    |-  ( ph  ->  X  e.  CC )   =>    |-  ( ph  ->  ( F `  X )  =  sum_ j  e.  (
 0 ... M ) ( ( A `  j
 )  x.  ( X ^ j ) ) )
 
13-Oct-2025tpfidceq 7060 A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  C  e.  D )   &    |-  ( ph  ->  A. x  e.  D  A. y  e.  D DECID  x  =  y )   =>    |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
 
13-Oct-2025prfidceq 7058 A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A. x  e.  C  A. y  e.  C DECID  x  =  y )   =>    |-  ( ph  ->  { A ,  B }  e.  Fin )
 
13-Oct-2025dcun 3581 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.)
 |-  ( ph  -> DECID  C  e.  A )   &    |-  ( ph  -> DECID  C  e.  B )   =>    |-  ( ph  -> DECID  C  e.  ( A  u.  B ) )
 
9-Oct-2025dvdsfi 12727 A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.)
 |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
 
7-Oct-2025df-mplcoe 14593 Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

 |- mPoly  =  ( i  e.  _V ,  r  e.  _V  |->  [_ ( i mPwSer  r ) 
 /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
 ) ( A. k  e.  i  ( a `  k )  <  (
 b `  k )  ->  ( f `  b
 )  =  ( 0g
 `  r ) ) } ) )
 
6-Oct-2025dvconstss 15337 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( X  X.  { A } ) )  =  ( X  X.  { 0 } ) )
 
6-Oct-2025dcfrompeirce 1472 The decidability of a proposition 
ch follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 918), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> F.  )   &    |-  ( ( (
 ph  ->  ps )  ->  ph )  -> 
 ph )   =>    |- DECID  ch
 
6-Oct-2025dcfromcon 1471 The decidability of a proposition 
ch follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 857), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> T.  )   &    |-  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 )   =>    |- DECID  ch
 
6-Oct-2025dcfromnotnotr 1470 The decidability of a proposition 
ps follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 847), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ps  \/  -. 
 ps ) )   &    |-  ( -.  -.  ph  ->  ph )   =>    |- DECID  ps
 
3-Oct-2025dvidre 15336 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( RR  _D  (  _I  |`  RR ) )  =  ( RR  X.  { 1 } )
 
3-Oct-2025dvconstre 15335 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( A  e.  CC  ->  ( RR  _D  ( RR  X.  { A }
 ) )  =  ( RR  X.  { 0 } ) )
 
3-Oct-2025dvidsslem 15332 Lemma for dvconstss 15337. Analogue of dvidlemap 15330 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ( ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  ->  ( ( ( F `
  z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( S  _D  F )  =  ( X  X.  { B } ) )
 
3-Oct-2025dvidrelem 15331 Lemma for dvidre 15336 and dvconstre 15335. Analogue of dvidlemap 15330 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  (
 ( ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( RR  _D  F )  =  ( RR  X.  { B }
 ) )
 
28-Sep-2025metuex 14484 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
 
28-Sep-2025cndsex 14482 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( abs  o.  -  )  e.  _V
 
25-Sep-2025cntopex 14483 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  e. 
 _V
 
24-Sep-2025mopnset 14481 Getting a set by applying 
MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |-  ( D  e.  V  ->  ( MetOpen `  D )  e.  _V )
 
24-Sep-2025blfn 14480 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |- 
 ball  Fn  _V
 
23-Sep-2025elfzoext 10365 Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( N  +  I
 ) ) )
 
22-Sep-2025plycjlemc 15399 Lemma for plycj 15400. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( z ^
 k ) ) ) )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( ( *  o.  A ) `  k
 )  x.  ( z ^ k ) ) ) )
 
20-Sep-2025plycolemc 15397 Lemma for plyco 15398. The result expressed as a sum, with a degree and coefficients for  F specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( N  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( x ^
 k ) ) ) )   =>    |-  ( ph  ->  (
 z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( ( G `
  z ) ^
 k ) ) )  e.  (Poly `  S ) )
 
18-Sep-2025elfzoextl 10364 Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( I  +  N ) ) )
 
16-Sep-2025lgsquadlemofi 15720 Lemma for lgsquad 15724. There are finitely many members of  S with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  { z  e.  S  |  -.  2  ||  ( 1st `  z ) }  e.  Fin )
 
16-Sep-2025lgsquadlemsfi 15719 Lemma for lgsquad 15724. 
S is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  S  e.  Fin )
 
16-Sep-2025opabfi 7068 Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )   =>    |-  ( ph  ->  S  e.  Fin )
 
13-Sep-2025uchoice 6253 Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7357 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
 f `  x )  /  y ]. ph )
 )
 
11-Sep-2025expghmap 14536 Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
11-Sep-2025cnfldui 14518 The invertible complex numbers are exactly those apart from zero. This is recapb 8786 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
9-Sep-2025gsumfzfsumlemm 14516 Lemma for gsumfzfsum 14517. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzfsumlem0 14515 Lemma for gsumfzfsum 14517. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
9-Sep-2025gsumfzmhm2 13847 Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  X  e.  B )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) )  =  E )
 
8-Sep-2025gsumfzmhm 13846 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ( G MndHom  H )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
8-Sep-20255ndvds6 12412 5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  6
 
8-Sep-20255ndvds3 12411 5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  3
 
6-Sep-2025gsumfzconst 13844 Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
31-Aug-2025gsumfzmptfidmadd 13842 The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
30-Aug-2025gsumfzsubmcl 13841 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  S  e.  (SubMnd `  G )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> S )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
30-Aug-2025seqm1g 10663 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
29-Aug-2025seqf1og 10710 Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( G `  x )  e.  C )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
25-Aug-2025irrmulap 9811 The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9810. (Contributed by Jim Kingdon, 25-Aug-2025.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A. q  e.  QQ  A #  q )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  B  =/=  0
 )   &    |-  ( ph  ->  Q  e.  QQ )   =>    |-  ( ph  ->  ( A  x.  B ) #  Q )
 
19-Aug-2025seqp1g 10655 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  F  e.  V  /\  .+  e.  W )  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
19-Aug-2025seq1g 10652 Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V  /\  .+  e.  W ) 
 ->  (  seq M ( 
 .+  ,  F ) `  M )  =  ( F `  M ) )
 
18-Aug-2025iswrdiz 11045 A zero-based sequence is a word. In iswrdinn0 11043 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  W  e. Word  S )
 
16-Aug-2025gsumfzcl 13498 Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  B )
 
16-Aug-2025iswrdinn0 11043 A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  NN0 )  ->  W  e. Word  S )
 
15-Aug-2025gsumfzz 13494 Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  ) )  =  .0.  )
 
14-Aug-2025gsumfzval 13390 An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `
  N ) ) )
 
13-Aug-2025znidom 14586 The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  Prime  ->  Y  e. IDomn )
 
12-Aug-2025rrgmex 14190 A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
 |-  E  =  (RLReg `  R )   =>    |-  ( A  e.  E  ->  R  e.  _V )
 
10-Aug-2025gausslemma2dlem1cl 15703 Lemma for gausslemma2dlem1 15705. Closure of the body of the definition of  R. (Contributed by Jim Kingdon, 10-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  ( ph  ->  A  e.  ( 1 ...
 H ) )   =>    |-  ( ph  ->  if ( ( A  x.  2 )  <  ( P 
 /  2 ) ,  ( A  x.  2
 ) ,  ( P  -  ( A  x.  2 ) ) )  e.  ZZ )
 
9-Aug-2025gausslemma2dlem1f1o 15704 Lemma for gausslemma2dlem1 15705. (Contributed by Jim Kingdon, 9-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   =>    |-  ( ph  ->  R : ( 1 ...
 H ) -1-1-onto-> ( 1 ... H ) )
 
7-Aug-2025qdclt 10432 Rational  < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  <  B )
 
22-Jul-2025ivthdich 15292 The intermediate value theorem implies real number dichotomy. Because real number dichotomy (also known as analytic LLPO) is a constructive taboo, this means we will be unable to prove the intermediate value theorem as stated here (although versions with additional conditions, such as ivthinc 15282 for strictly monotonic functions, can be proved).

The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number  z. We want to show that  z  <_  0  \/  0  <_  z. Because of hovercncf 15285, hovera 15286, and hoverb 15287, we are able to apply the intermediate value theorem to get a value  c such that the hover function at  c equals  z. By axltwlin 8182,  c  <  1 or  0  <  c, and that leads to  z  <_  0 by hoverlt1 15288 or 
0  <_  z by hovergt0 15289. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)

 |-  ( A. f ( f  e.  ( RR
 -cn-> RR )  ->  A. a  e.  RR  A. b  e. 
 RR  ( ( a  <  b  /\  (
 f `  a )  <  0  /\  0  < 
 ( f `  b
 ) )  ->  E. x  e.  RR  ( a  < 
 x  /\  x  <  b 
 /\  ( f `  x )  =  0
 ) ) )  ->  A. r  e.  RR  A. s  e.  RR  (
 r  <_  s  \/  s  <_  r ) )
 
22-Jul-2025dich0 15291 Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  ( A. z  e. 
 RR  ( z  <_ 
 0  \/  0  <_  z )  <->  A. x  e.  RR  A. y  e.  RR  ( x  <_  y  \/  y  <_  x ) )
 
22-Jul-2025ivthdichlem 15290 Lemma for ivthdich 15292. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   &    |-  ( ph  ->  Z  e.  RR )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
 
22-Jul-2025hovergt0 15289 The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  0  <  C )  ->  0  <_  ( F `  C ) )
 
22-Jul-2025hoverlt1 15288 The hover function evaluated at a point less than one. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  C  <  1
 )  ->  ( F `  C )  <_  0
 )
 
21-Jul-2025hoverb 15287 A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  Z  <  ( F `
  ( Z  +  2 ) ) )
 
21-Jul-2025hovera 15286 A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  ( F `  ( Z  -  1 ) )  <  Z )
 
21-Jul-2025rexeqtrrdv 2719 Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
21-Jul-2025raleqtrrdv 2718 Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
21-Jul-2025rexeqtrdv 2717 Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
21-Jul-2025raleqtrdv 2716 Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
20-Jul-2025hovercncf 15285 The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  F  e.  ( RR
 -cn-> RR )
 
19-Jul-2025mincncf 15255 The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X
 -cn-> RR ) )
 
18-Jul-2025maxcncf 15254 The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
 
14-Jul-2025xnn0nnen 10626 The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
 |- NN0*  ~~  NN
 
12-Jul-2025nninfninc 7258 All values beyond a zero in an ℕ sequence are zero. This is another way of stating that elements of ℕ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
 |-  ( ph  ->  A  e. )   &    |-  ( ph  ->  X  e.  om )   &    |-  ( ph  ->  Y  e.  om )   &    |-  ( ph  ->  X  C_  Y )   &    |-  ( ph  ->  ( A `  X )  =  (/) )   =>    |-  ( ph  ->  ( A `  Y )  =  (/) )
 
10-Jul-2025nninfctlemfo 12527 Lemma for nninfct 12528. (Contributed by Jim Kingdon, 10-Jul-2025.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( om  e. Omni  ->  I :NN0* -onto-> )
 
8-Jul-2025nnnninfen 16298 Equinumerosity of the natural numbers and ℕ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |-  ( om  ~~  <->  om  e. Omni )
 
8-Jul-2025nninfct 12528 The limited principle of omniscience (LPO) implies that ℕ is countable. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |-  ( om  e. Omni  ->  E. f  f : om -onto->
 ( 1o ) )
 
8-Jul-2025nninfinf 10632 is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |- 
 om  ~<_
 
7-Jul-2025ivthreinc 15284 Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15282). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function  F is continuous on the entire real line, not just  ( A [,] B ) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  F  e.  ( RR -cn-> RR ) )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
28-Jun-2025fngsum 13387 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |- 
 gsumg  Fn  ( _V  X.  _V )
 
28-Jun-2025iotaexel 5932 Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |-  ( ( A  e.  V  /\  A. x (
 ph  ->  x  e.  A ) )  ->  ( iota
 x ph )  e.  _V )
 
27-Jun-2025df-igsum 13258 Define a finite group sum (also called "iterated sum") of a structure.

Given  G  gsumg  F where  F : A --> ( Base `  G ), the set of indices is  A and the values are given by  F at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set  A and each demanding different properties of  G.

1. If  A  =  (/) and  G has an identity element, then the sum equals this identity.

2. If  A  =  ( M ... N ) and 
G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e.,  ( ( F `  1 )  +  ( F ` 
2 ) )  +  ( F `  3
), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

 |- 
 gsumg  =  ( w  e.  _V ,  f  e.  _V  |->  ( iota x ( ( dom  f  =  (/)  /\  x  =  ( 0g
 `  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m
 ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f
 ) `  n )
 ) ) ) )
 
20-Jun-2025opprnzrbg 14114 The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 14115. (Contributed by SN, 20-Jun-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  ( R  e. NzRing  <->  O  e. NzRing ) )
 
16-Jun-2025fnpsr 14596 The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
 |- mPwSer  Fn  ( _V  X.  _V )
 
14-Jun-2025basm 13060 A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( A  e.  B  ->  E. j  j  e.  G )
 
14-Jun-2025elfvm 5636 If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
 |-  ( A  e.  ( F `  B )  ->  E. j  j  e.  F )
 
6-Jun-2025pcxqcl 12801 The general prime count function is an integer or infinite. (Contributed by Jim Kingdon, 6-Jun-2025.)
 |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( ( P 
 pCnt  N )  e.  ZZ  \/  ( P  pCnt  N )  = +oo ) )
 
5-Jun-2025xqltnle 10454 "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +oo. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in NN0* or  RR*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
 |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) ) 
 ->  ( A  <  B  <->  -.  B  <_  A )
 )
 
5-Jun-2025ceqsexv2d 2820 Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ps   =>    |-  E. x ph
 
31-May-2025vtocl4ga 2853 Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  rh ) )   &    |-  ( w  =  D  ->  ( rh  <->  th ) )   &    |-  (
 ( ( x  e.  Q  /\  y  e.  R )  /\  (
 z  e.  S  /\  w  e.  T )
 )  ->  ph )   =>    |-  ( ( ( A  e.  Q  /\  B  e.  R )  /\  ( C  e.  S  /\  D  e.  T ) )  ->  th )
 
30-May-20254sqexercise2 12888 Exercise which may help in understanding the proof of 4sqlemsdc 12889. (Contributed by Jim Kingdon, 30-May-2025.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) }   =>    |-  ( A  e.  NN0  -> DECID  A  e.  S )
 
27-May-2025iotaexab 5273 Existence of the  iota class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
 |-  ( { x  |  ph
 }  e.  V  ->  (
 iota x ph )  e. 
 _V )
 
25-May-20254sqlemsdc 12889 Lemma for 4sq 12899. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular  A) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12887 and 4sqexercise2 12888 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( A  e.  NN0  -> DECID  A  e.  S )
 
25-May-20254sqexercise1 12887 Exercise which may help in understanding the proof of 4sqlemsdc 12889. (Contributed by Jim Kingdon, 25-May-2025.)
 |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^ 2 ) }   =>    |-  ( A  e.  NN0  -> DECID  A  e.  S )
 
24-May-20254sqleminfi 12886 Lemma for 4sq 12899. 
A  i^i  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  NN )   &    |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^
 2 )  mod  P ) }   &    |-  F  =  ( v  e.  A  |->  ( ( P  -  1
 )  -  v ) )   =>    |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
 
24-May-20254sqlemffi 12885 Lemma for 4sq 12899.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  NN )   &    |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^
 2 )  mod  P ) }   &    |-  F  =  ( v  e.  A  |->  ( ( P  -  1
 )  -  v ) )   =>    |-  ( ph  ->  ran  F  e.  Fin )
 
24-May-20254sqlemafi 12884 Lemma for 4sq 12899. 
A is finite. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  NN )   &    |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^
 2 )  mod  P ) }   =>    |-  ( ph  ->  A  e.  Fin )
 
24-May-2025infidc 7069 The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  x  e.  B )  ->  ( A  i^i  B )  e. 
 Fin )
 
19-May-2025zrhex 14550 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
16-May-2025rhmex 14086 Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RingHom  S )  e.  _V )
 
15-May-2025ghmex 13758 The set of group homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  e.  _V )
 
15-May-2025mhmex 13461 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )
 
14-May-2025idomcringd 14207 An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  CRing )
 
6-May-2025rrgnz 14197 In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
 |-  E  =  (RLReg `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. NzRing  ->  -.  .0.  e.  E )
 
5-May-2025rngressid 13883 A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 13070. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
 
5-May-2025ablressid 13838 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 13070. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
 
30-Apr-2025dvply2g 15405 The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
 |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) ) 
 ->  ( CC  _D  F )  e.  (Poly `  S ) )
 
29-Apr-2025rlmscabas 14389 Scalars in the ring module have the same base set. (Contributed by Jim Kingdon, 29-Apr-2025.)
 |-  ( R  e.  X  ->  ( Base `  R )  =  ( Base `  (Scalar `  (ringLMod `  R ) ) ) )
 
29-Apr-2025ressbasid 13069 The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  V  ->  ( Base `  ( Ws  B ) )  =  B )
 
28-Apr-2025lssmex 14284 If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( U  e.  S  ->  W  e.  _V )
 
27-Apr-2025cnfldmul 14493 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 x.  =  ( .r
 ` fld
 )
 
27-Apr-2025cnfldadd 14491 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 +  =  ( +g  ` fld )
 
27-Apr-2025lidlex 14402 Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  (LIdeal `  W )  e.  _V )
 
27-Apr-2025lssex 14283 Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  ( LSubSp `  W )  e.  _V )
 
25-Apr-2025rspex 14403 Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  V  ->  (RSpan `  W )  e.  _V )
 
25-Apr-2025lspex 14324 Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  X  ->  ( LSpan `  W )  e.  _V )
 
25-Apr-2025eqgex 13724 The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
 
25-Apr-2025qusex 13324 Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( R  e.  V  /\  .~  e.  W )  ->  ( R  /.s  .~  )  e.  _V )
 
23-Apr-20251dom1el 16264 If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
 |-  (
 ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
 
22-Apr-2025mulgex 13626 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
 |-  ( G  e.  V  ->  (.g `  G )  e. 
 _V )
 
21-Apr-2025uspgruhgr 15950 An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.)
 |-  ( G  e. USPGraph  ->  G  e. UHGraph )
 
20-Apr-2025uspgriedgedg 15942 In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  X  e.  dom  I ) 
 ->  E! k  e.  E  k  =  ( I `  X ) )
 
20-Apr-2025uspgredgiedg 15941 In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  K  e.  E )  ->  E! x  e.  dom  I  K  =  ( I `
  x ) )
 
20-Apr-2025elovmpod 6174 Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6175 in deduction form. (Revised by AV, 20-Apr-2025.)
 |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  D  e.  V )   &    |-  (
 ( a  =  X  /\  b  =  Y )  ->  C  =  D )   =>    |-  ( ph  ->  ( E  e.  ( X O Y )  <->  E  e.  D ) )
 
20-Apr-2025fdmeu 5650 There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.)
 |-  ( ( F : A
 --> B  /\  X  e.  A )  ->  E! y  e.  B  ( F `  X )  =  y
 )
 
18-Apr-2025fsumdvdsmul 15630 Product of two divisor sums. (This is also the main part of the proof that " sum_ k  ||  N F ( k ) is a multiplicative function if  F is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 8090. (Revised by GG, 18-Apr-2025.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   &    |-  X  =  { x  e.  NN  |  x  ||  M }   &    |-  Y  =  { x  e.  NN  |  x  ||  N }   &    |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }   &    |-  ( ( ph  /\  j  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Y )  ->  B  e.  CC )   &    |-  ( ( ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  ( A  x.  B )  =  D )   &    |-  ( i  =  ( j  x.  k
 )  ->  C  =  D )   =>    |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  =  sum_ i  e.  Z  C )
 
18-Apr-2025mpodvdsmulf1o 15629 If  M and  N are two coprime integers, multiplication forms a bijection from the set of pairs  <. j ,  k >. where  j  ||  M and  k  ||  N, to the set of divisors of  M  x.  N. (Contributed by GG, 18-Apr-2025.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   &    |-  X  =  { x  e.  NN  |  x  ||  M }   &    |-  Y  =  { x  e.  NN  |  x  ||  N }   &    |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }   =>    |-  ( ph  ->  (
 ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-onto-> Z )
 
18-Apr-2025df2idl2 14438 Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( ( x 
 .x.  y )  e.  I  /\  ( y 
 .x.  x )  e.  I ) ) ) )
 
18-Apr-20252idlmex 14430 Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  T  =  (2Ideal `  W )   =>    |-  ( U  e.  T  ->  W  e.  _V )
 
18-Apr-2025dflidl2 14417 Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I
 ) ) )
 
18-Apr-2025lidlmex 14404 Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  I  =  (LIdeal `  W )   =>    |-  ( U  e.  I  ->  W  e.  _V )
 
18-Apr-2025lsslsp 14358 Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.)
 |-  X  =  ( Ws  U )   &    |-  M  =  (
 LSpan `  W )   &    |-  N  =  ( LSpan `  X )   &    |-  L  =  ( LSubSp `  W )   =>    |-  (
 ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  =  ( M `  G ) )
 
16-Apr-2025sraex 14375 Existence of a subring algebra. (Contributed by Jim Kingdon, 16-Apr-2025.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  A  e.  _V )
 
14-Apr-2025grpmgmd 13525 A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
 |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  G  e. Mgm )
 
12-Apr-2025psraddcl 14609 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  R  e. Mgm )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
10-Apr-2025cndcap 16338 Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
 
4-Apr-2025ghmf1 13776 Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0.  ->  x  =  N ) ) )
 
3-Apr-2025quscrng 14462 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  CRing  /\  S  e.  I ) 
 ->  U  e.  CRing )
 
31-Mar-2025cnfldds 14497 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14486. (Revised by GG, 31-Mar-2025.)
 |-  ( abs  o.  -  )  =  ( dist ` fld )
 
31-Mar-2025cnfldle 14496 The ordering of the field of complex numbers. Note that this is not actually an ordering on  CC, but we put it in the structure anyway because restricting to  RR does not affect this component, so that  (flds  RR ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14486. (Revised by GG, 31-Mar-2025.)
 |- 
 <_  =  ( le ` fld )
 
31-Mar-2025cnfldtset 14495 The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  =  (TopSet ` fld )
 
31-Mar-2025mpocnfldmul 14492 The multiplication operation of the field of complex numbers. Version of cnfldmul 14493 using maps-to notation, which does not require ax-mulf 8090. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  =  ( .r ` fld )
 
31-Mar-2025mpocnfldadd 14490 The addition operation of the field of complex numbers. Version of cnfldadd 14491 using maps-to notation, which does not require ax-addf 8089. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
 ) )  =  (
 +g  ` fld )
 
31-Mar-2025df-cnfld 14486 The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14488, cnfldadd 14491, cnfldmul 14493, cnfldcj 14494, cnfldtset 14495, cnfldle 14496, cnfldds 14497, and cnfldbas 14489. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

 |-fld  =  ( ( { <. (
 Base `  ndx ) ,  CC >. ,  <. ( +g  ` 
 ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. , 
 <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e. 
 CC  |->  ( x  x.  y ) ) >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
 ) >. ,  <. ( le ` 
 ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o. 
 -  ) >. }  u.  {
 <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
 -  ) ) >. } ) )
 
31-Mar-20252idlcpbl 14453 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D ) ) )
 
22-Mar-2025idomringd 14208 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  Ring )
 
22-Mar-2025idomdomd 14206 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e. Domn )
 
21-Mar-2025df2idl2rng 14437 Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  (
 ( x  .x.  y
 )  e.  I  /\  ( y  .x.  x )  e.  I ) ) )
 
21-Mar-2025isridlrng 14411 A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) )
 
21-Mar-2025dflidl2rng 14410 Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I ) )
 
20-Mar-2025ccoslid 13237 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  (comp  = Slot  (comp `  ndx )  /\  (comp `  ndx )  e.  NN )
 
20-Mar-2025homslid 13234 Slot property of  Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e. 
 NN )
 
19-Mar-2025ptex 13263 Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
 |-  ( F  e.  V  ->  ( Xt_ `  F )  e.  _V )
 
18-Mar-2025prdsex 13268 Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
 |-  ( ( S  e.  V  /\  R  e.  W )  ->  ( S X_s R )  e.  _V )
 
16-Mar-2025plycn 15401 A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8090. (Revised by GG, 16-Mar-2025.)
 |-  ( F  e.  (Poly `  S )  ->  F  e.  ( CC -cn-> CC )
 )
 
16-Mar-2025expcn 15208 The power function on complex numbers, for fixed exponent  N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8090. (Revised by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
 
16-Mar-2025mpomulcn 15205 Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  ( ( J  tX  J )  Cn  J )
 
16-Mar-2025mpomulf 8104 Multiplication is an operation on complex numbers. Version of ax-mulf 8090 using maps-to notation, proved from the axioms of set theory and ax-mulcl 8065. (Contributed by GG, 16-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) ) : ( CC  X.  CC ) --> CC
 
13-Mar-20252idlss 14443 A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
 |-  B  =  ( Base `  W )   &    |-  I  =  (2Ideal `  W )   =>    |-  ( U  e.  I  ->  U  C_  B )
 
13-Mar-2025imasex 13304 Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
 |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  e.  _V )
 
11-Mar-2025rng2idlsubgsubrng 14449 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (SubRng `  R )
 )
 
11-Mar-2025rng2idlsubrng 14446 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  I  e.  (SubRng `  R ) )
 
11-Mar-2025rnglidlrng 14427 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R ) )  ->  I  e. Rng
 )
 
11-Mar-2025rnglidlmsgrp 14426 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp
 )
 
11-Mar-2025rnglidlmmgm 14425 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm
 )
 
11-Mar-2025imasival 13305 Value of an image structure. The is a lemma for the theorems imasbas 13306, imasplusg 13307, and imasmulr 13308 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  ( ph  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .+  q ) ) >. } )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .X.  q ) ) >. } )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. } )
 
9-Mar-20252idlridld 14436 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  O  =  (oppr `  R )   =>    |-  ( ph  ->  I  e.  (LIdeal `  O )
 )
 
9-Mar-20252idllidld 14435 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   =>    |-  ( ph  ->  I  e.  (LIdeal `  R )
 )
 
9-Mar-2025quseccl 13736 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  B )
 
9-Mar-2025fovcl 6081 Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.)
 |-  F : ( R  X.  S ) --> C   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
 
8-Mar-2025subgex 13679 The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
 |-  ( G  e.  Grp  ->  (SubGrp `  G )  e. 
 _V )
 
7-Mar-2025ringrzd 13975 The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
 
7-Mar-2025ringlzd 13974 The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (  .0.  .x.  X )  =  .0.  )
 
7-Mar-2025qusecsub 13834 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) ) 
 /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S ) )
 
1-Mar-2025quselbasg 13733 Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  U  =  ( G 
 /.s  .~  )   &    |-  B  =  (
 Base `  G )   =>    |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  ( Base `  U ) 
 <-> 
 E. x  e.  B  X  =  [ x ]  .~  ) )
 
28-Feb-2025qusmulrng 14461 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14462. Similar to qusmul2 14458. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
 |- 
 .~  =  ( R ~QG  S )   &    |-  H  =  ( R 
 /.s  .~  )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  H )   =>    |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [ ( X  .x.  Y ) ]  .~  )
 
28-Feb-2025ringressid 13992 A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 13070. (Contributed by Jim Kingdon, 28-Feb-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Ring  ->  ( Gs  B )  e.  Ring )
 
28-Feb-2025grpressid 13560 A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 13070. (Contributed by Jim Kingdon, 28-Feb-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
 
27-Feb-2025imasringf1 13994 The image of a ring under an injection is a ring. (Contributed by AV, 27-Feb-2025.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Ring )  ->  U  e.  Ring )
 
26-Feb-2025strext 13104 Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  C  e.  ( ZZ>= `  B )
 )   =>    |-  ( ph  ->  F Struct  <. A ,  C >. )
 
25-Feb-2025subrngringnsg 14134 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (NrmSGrp `  R )
 )
 
25-Feb-2025rngansg 13879 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
 |-  ( R  e. Rng  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
 
25-Feb-2025ecqusaddd 13741 Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  ) )
 
24-Feb-2025ecqusaddcl 13742 Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  )  e.  ( Base `  Q ) )
 
24-Feb-2025quseccl0g 13734 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13736 for arbitrary sets  G. (Revised by AV, 24-Feb-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  H  =  ( G 
 /.s  .~  )   &    |-  C  =  (
 Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( G  e.  V  /\  X  e.  C  /\  S  e.  Z )  ->  [ X ]  .~  e.  B )
 
23-Feb-2025ltlenmkv 16349 If  < can be expressed as holding exactly when 
<_ holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 16347). (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  ->  A. x  e.  RR  A. y  e. 
 RR  ( x  =/=  y  ->  x #  y
 ) )
 
23-Feb-2025neap0mkv 16348 The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
 
23-Feb-2025qus2idrng 14454 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14456 analog). (Contributed by AV, 23-Feb-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  U  e. Rng )
 
23-Feb-20252idlcpblrng 14452 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C 
 .x.  D ) ) )
 
23-Feb-2025lringuplu 14125 If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  U  =  (Unit `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  ( X  .+  Y )  e.  U )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U )
 )
 
23-Feb-2025lringnz 14124 A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |- 
 .1.  =  ( 1r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
 
23-Feb-2025lringring 14123 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |-  ( R  e. LRing  ->  R  e.  Ring )
 
23-Feb-2025lringnzr 14122 A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
 |-  ( R  e. LRing  ->  R  e. NzRing )
 
23-Feb-2025islring 14121 The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  U  =  (Unit `  R )   =>    |-  ( R  e. LRing  <->  ( R  e. NzRing  /\ 
 A. x  e.  B  A. y  e.  B  ( ( x  .+  y
 )  =  .1.  ->  ( x  e.  U  \/  y  e.  U )
 ) ) )
 
23-Feb-2025df-lring 14120 A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r )
 ( ( x (
 +g  `  r )
 y )  =  ( 1r `  r ) 
 ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r )
 ) ) }
 
23-Feb-202501eq0ring 14118 If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  .0.  =  .1.  )  ->  B  =  {  .0.  } )
 
23-Feb-2025nzrring 14112 A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
 |-  ( R  e. NzRing  ->  R  e.  Ring )
 
23-Feb-2025qusrng 13887 The quotient structure of a non-unital ring is a non-unital ring (qusring2 13995 analog). (Contributed by AV, 23-Feb-2025.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  (
 ( a  .~  p  /\  b  .~  q ) 
 ->  ( a  .+  b
 )  .~  ( p  .+  q ) ) )   &    |-  ( ph  ->  ( (
 a  .~  p  /\  b  .~  q )  ->  ( a  .x.  b ) 
 .~  ( p  .x.  q ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
23-Feb-2025rngsubdir 13881 Ring multiplication distributes over subtraction. (subdir 8500 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13986. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) ) )
 
23-Feb-2025rngsubdi 13880 Ring multiplication distributes over subtraction. (subdi 8499 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13985. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) ) )
 
22-Feb-2025imasrngf1 13886 The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e. Rng )  ->  U  e. Rng )
 
22-Feb-2025imasrng 13885 The image structure of a non-unital ring is a non-unital ring (imasring 13993 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
22-Feb-2025rngmgpf 13866 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13940 analog). (Contributed by AV, 22-Feb-2025.)
 |-  (mulGrp  |` Rng ) :Rng -->Smgrp
 
22-Feb-2025imasabl 13839 The image structure of an abelian group is an abelian group (imasgrp 13614 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Abel  /\  ( F ` 
 .0.  )  =  ( 0g `  U ) ) )
 
21-Feb-2025prdssgrpd 13414 The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I -->Smgrp )   =>    |-  ( ph  ->  Y  e. Smgrp )
 
21-Feb-2025prdsplusgsgrpcl 13413 Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I -->Smgrp )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F  .+  G )  e.  B )
 
21-Feb-2025dftap2 7405 Tight apartness with the apartness properties from df-pap 7402 expanded. (Contributed by Jim Kingdon, 21-Feb-2025.)
 |-  ( R TAp  A  <->  ( R  C_  ( A  X.  A ) 
 /\  ( A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x ) )  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) 
 /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) ) )
 
20-Feb-2025rng2idlsubg0 14451 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I )
 
20-Feb-2025rng2idlsubgnsg 14450 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )
 
20-Feb-2025rng2idl0 14448 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I
 )
 
20-Feb-2025rng2idlnsg 14447 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R ) )
 
20-Feb-20252idlelbas 14445 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  J  =  ( Rs  I )   &    |-  B  =  (
 Base `  J )   =>    |-  ( ph  ->  ( B  e.  (LIdeal `  R )  /\  B  e.  (LIdeal `  (oppr `  R ) ) ) )
 
20-Feb-20252idlbas 14444 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  J  =  ( Rs  I )   &    |-  B  =  (
 Base `  J )   =>    |-  ( ph  ->  B  =  I )
 
20-Feb-20252idlelb 14434 Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  ( U  e.  T  <->  ( U  e.  I  /\  U  e.  J )
 )
 
20-Feb-2025aprap 14215 The relation given by df-apr 14210 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( R  e. LRing  ->  (#r `  R ) Ap  ( Base `  R ) )
 
20-Feb-2025setscomd 13039 Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( ph  ->  A  e.  Y )   &    |-  ( ph  ->  B  e.  Z )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  D  e.  X )   =>    |-  ( ph  ->  (
 ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
 
20-Feb-2025ifnebibdc 3628 The converse of ifbi 3603 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
 |-  ( (DECID 
 ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B )  <->  ( ph  <->  ps ) ) )
 
20-Feb-2025ifnefals 3627 Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
 |-  ( ( A  =/=  B 
 /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )
 
20-Feb-2025ifnetruedc 3626 Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
 |-  ( (DECID 
 ph  /\  A  =/=  B 
 /\  if ( ph ,  A ,  B )  =  A )  ->  ph )
 
18-Feb-2025rnglidlmcl 14409 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
 |- 
 .0.  =  ( 0g `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  .0.  e.  I
 )  /\  ( X  e.  B  /\  Y  e.  I ) )  ->  ( X  .x.  Y )  e.  I )
 
17-Feb-2025aprcotr 14214 The apartness relation given by df-apr 14210 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  ( X #  Z  \/  Y #  Z ) ) )
 
17-Feb-2025aprsym 14213 The apartness relation given by df-apr 14210 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  Y #  X ) )
 
17-Feb-2025aprval 14211 Expand Definition df-apr 14210. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  .-  =  ( -g `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  R  e.  Ring
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U ) )
 
17-Feb-2025subrngpropd 14145 If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L ) )
 
17-Feb-2025rngm2neg 13878 Double negation of a product in a non-unital ring (mul2neg 8512 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13984. (Revised by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  ( N `  Y ) )  =  ( X  .x.  Y ) )
 
17-Feb-2025rngmneg2 13877 Negation of a product in a non-unital ring (mulneg2 8510 analog). In contrast to ringmneg2 13983, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( N `  Y ) )  =  ( N `  ( X  .x.  Y ) ) )
 
17-Feb-2025rngmneg1 13876 Negation of a product in a non-unital ring (mulneg1 8509 analog). In contrast to ringmneg1 13982, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  Y )  =  ( N `  ( X  .x.  Y ) ) )
 
16-Feb-2025aprirr 14212 The apartness relation given by df-apr 14210 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  ( 1r `  R )  =/=  ( 0g `  R ) )   =>    |-  ( ph  ->  -.  X #  X )
 
16-Feb-2025rngrz 13875 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13973. (Revised by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
16-Feb-2025rng0cl 13872 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Rng  ->  .0.  e.  B )
 
16-Feb-2025rngacl 13871 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
16-Feb-2025rnggrp 13867 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
 |-  ( R  e. Rng  ->  R  e.  Grp )
 
16-Feb-2025aptap 8765 Complex apartness (as defined at df-ap 8697) is a tight apartness (as defined at df-tap 7404). (Contributed by Jim Kingdon, 16-Feb-2025.)
 |- # TAp  CC
 
15-Feb-2025subsubrng2 14144 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  (SubRng `  S )  =  ( (SubRng `  R )  i^i  ~P A ) )
 
15-Feb-2025subsubrng 14143 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  ( B  e.  (SubRng `  S ) 
 <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
 
15-Feb-2025subrngin 14142 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  R ) )  ->  ( A  i^i  B )  e.  (SubRng `  R )
 )
 
15-Feb-2025subrngintm 14141 The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
 
15-Feb-2025opprsubrngg 14140 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O )
 )
 
15-Feb-2025issubrng2 14139 Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) ) )
 
15-Feb-2025opprrngbg 14007 A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 14006. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng ) )
 
15-Feb-2025opprrng 14006 An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e. Rng  ->  O  e. Rng )
 
15-Feb-2025rngpropd 13884 If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
 
15-Feb-2025sgrppropd 13412 If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  ( ph  ->  B  =  (
 Base `  K ) )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Smgrp  <->  L  e. Smgrp ) )
 
15-Feb-2025sgrpcl 13408 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
15-Feb-2025tapeq2 7407 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.)
 |-  ( A  =  B  ->  ( R TAp  A  <->  R TAp  B )
 )
 
14-Feb-2025subrngmcl 14138 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 14162. (Revised by AV, 14-Feb-2025.)
 |- 
 .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
 
14-Feb-2025subrngacl 14137 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
 |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .+  Y )  e.  A )
 
14-Feb-2025subrng0 14136 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  .0.  =  ( 0g `  S ) )
 
14-Feb-2025subrngbas 14135 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  =  ( Base `  S )
 )
 
14-Feb-2025subrngsubg 14133 A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (SubGrp `  R )
 )
 
14-Feb-2025subrngrcl 14132 Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  R  e. Rng )
 
14-Feb-2025subrngrng 14131 A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  S  e. Rng )
 
14-Feb-2025subrngid 14130 Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( R  e. Rng  ->  B  e.  (SubRng `  R ) )
 
14-Feb-2025subrngss 14129 A subring is a subset. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  C_  B )
 
14-Feb-2025issubrng 14128 The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRng `  R )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
 
14-Feb-2025df-subrng 14127 Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.)
 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s
 )  e. Rng } )
 
14-Feb-2025isrngd 13882 Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .x.  =  ( .r `  R ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .x.  y
 )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .x.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   =>    |-  ( ph  ->  R  e. Rng )
 
14-Feb-2025rngdi 13869 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
14-Feb-2025exmidmotap 7415 The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID  <->  A. x E* r  r TAp 
 x )
 
14-Feb-2025exmidapne 7414 Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID 
 ->  ( R TAp  A  <->  R  =  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } )
 )
 
14-Feb-2025df-pap 7402 Apartness predicate. A relation  R is an apartness if it is irreflexive, symmetric, and cotransitive. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  ( R Ap  A  <->  ( ( R 
 C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) ) ) )
 
13-Feb-20252idl1 14442 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
 |-  I  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  I )
 
13-Feb-20252idl0 14441 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
 |-  I  =  (2Ideal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  I
 )
 
13-Feb-2025ridl1 14440 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   =>    |-  ( R  e.  Ring 
 ->  B  e.  U )
 
13-Feb-2025ridl0 14439 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
 
13-Feb-2025isridl 14433 A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) ) )
 
13-Feb-2025df-apr 14210 The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 14215. (Contributed by Jim Kingdon, 13-Feb-2025.)
 |- #r  =  ( w  e.  _V  |->  {
 <. x ,  y >.  |  ( ( x  e.  ( Base `  w )  /\  y  e.  ( Base `  w ) ) 
 /\  ( x (
 -g `  w )
 y )  e.  (Unit `  w ) ) }
 )
 
13-Feb-2025rngass 13868 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) ) )
 
13-Feb-2025issgrpd 13411 Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  G  e. Smgrp )
 
8-Feb-20252oneel 7410  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |- 
 <. (/) ,  1o >.  e. 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }
 
8-Feb-2025tapeq1 7406 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |-  ( R  =  S  ->  ( R TAp  A  <->  S TAp  A )
 )
 
7-Feb-2025psrgrp 14614 The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  S  e.  Grp )
 
7-Feb-2025resrhm2b 14178 Restriction of the codomain of a (ring) homomorphism. resghm2b 13765 analog. (Contributed by SN, 7-Feb-2025.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubRing `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
 
6-Feb-2025zzlesq 10897 An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025.)
 |-  ( N  e.  ZZ  ->  N  <_  ( N ^ 2 ) )
 
6-Feb-20252omotap 7413 If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( E* r  r TAp 
 2o  -> EXMID
 )
 
6-Feb-20252omotaplemst 7412 Lemma for 2omotap 7413. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( ( E* r  r TAp  2o  /\  -.  -.  ph )  ->  ph )
 
6-Feb-20252omotaplemap 7411 Lemma for 2omotap 7413. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( -.  -.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
 ) ) } TAp  2o )
 
6-Feb-20252onetap 7409 Negated equality is a tight apartness on  2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |- 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) } TAp  2o
 
5-Feb-2025netap 7408 Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } TAp  A )
 
5-Feb-2025df-tap 7404 Tight apartness predicate. A relation  R is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) )
 
1-Feb-2025mulgnn0cld 13646 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13641. (Contributed by SN, 1-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
31-Jan-20250subg 13702 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G ) )
 
29-Jan-2025grprinvd 13555 The right inverse of a group element. Deduction associated with grprinv 13550. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .+  ( N `
  X ) )  =  .0.  )
 
29-Jan-2025grplinvd 13554 The left inverse of a group element. Deduction associated with grplinv 13549. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( ( N `  X )  .+  X )  =  .0.  )
 
29-Jan-2025grpinvcld 13548 A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N `  X )  e.  B )
 
29-Jan-2025grpridd 13533 The identity element of a group is a right identity. Deduction associated with grprid 13531. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .+  .0.  )  =  X )
 
29-Jan-2025grplidd 13532 The identity element of a group is a left identity. Deduction associated with grplid 13530. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (  .0.  .+  X )  =  X )
 
29-Jan-2025grpassd 13511 A group operation is associative. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
28-Jan-2025dvdsrex 14027 Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
 |-  ( R  e. SRing  ->  (
 ||r `  R )  e.  _V )
 
24-Jan-2025reldvdsrsrg 14021 The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
 |-  ( R  e. SRing  ->  Rel  ( ||r
 `  R ) )
 
18-Jan-2025rerecapb 8958 A real number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 18-Jan-2025.)
 |-  ( A  e.  RR  ->  ( A #  0  <->  E. x  e.  RR  ( A  x.  x )  =  1 )
 )
 
18-Jan-2025recapb 8786 A complex number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies), generalized from real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  E. x  e.  CC  ( A  x.  x )  =  1 )
 )
 
17-Jan-2025ressval3d 13071 Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
 |-  R  =  ( Ss  A )   &    |-  B  =  (
 Base `  S )   &    |-  E  =  ( Base `  ndx )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  E  e.  dom  S )   &    |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
 
17-Jan-2025strressid 13070 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
 |-  ( ph  ->  B  =  ( Base `  W )
 )   &    |-  ( ph  ->  W Struct  <. M ,  N >. )   &    |-  ( ph  ->  Fun  W )   &    |-  ( ph  ->  ( Base ` 
 ndx )  e.  dom  W )   =>    |-  ( ph  ->  ( Ws  B )  =  W )
 
17-Jan-2025snelpwg 4275 A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 4189. (Revised by BJ, 17-Jan-2025.)
 |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  e.  ~P B ) )
 
16-Jan-2025ressex 13064 Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
 |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  e.  _V )
 
16-Jan-2025ressvalsets 13063 Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
 |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base ` 
 ndx ) ,  ( A  i^i  ( Base `  W ) ) >. ) )
 
12-Jan-2025isrim 14098 An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.)
 |-  B  =  ( Base `  R )   &    |-  C  =  (
 Base `  S )   =>    |-  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C ) )
 
10-Jan-2025rimrhm 14100 A ring isomorphism is a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.)
 |-  ( F  e.  ( R RingIso  S )  ->  F  e.  ( R RingHom  S )
 )
 
10-Jan-2025isrim0 14090 A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
 |-  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
 
10-Jan-2025opprex 14002 Existence of the opposite ring. If you know that  R is a ring, see opprring 14008. (Contributed by Jim Kingdon, 10-Jan-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  O  e.  _V )
 
10-Jan-2025mgpex 13854 Existence of the multiplication group. If  R is known to be a semiring, see srgmgp 13897. (Contributed by Jim Kingdon, 10-Jan-2025.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  V  ->  M  e.  _V )
 
5-Jan-2025imbibi 252 The antecedent of one side of a biconditional can be moved out of the biconditional to become the antecedent of the remaining biconditional. (Contributed by BJ, 1-Jan-2025.) (Proof shortened by Wolf Lammen, 5-Jan-2025.)
 |-  ( ( ( ph  ->  ps )  <->  ch )  ->  ( ph  ->  ( ps  <->  ch ) ) )
 
1-Jan-2025snss 3782 The singleton of an element of a class is a subset of the class (inference form of snssg 3781). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  C_  B )
 
1-Jan-2025snssg 3781 The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.)
 |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
 
1-Jan-2025snssb 3780 Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.)
 |-  ( { A }  C_  B  <->  ( A  e.  _V 
 ->  A  e.  B ) )
 
30-Dec-2024rex2dom 6941 A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.)
 |-  ( ( A  e.  V  /\  E. x  e.  A  E. y  e.  A  x  =/=  y
 )  ->  2o  ~<_  A )
 
23-Dec-2024en2prd 6940 Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  Y )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  =/=  D )   =>    |-  ( ph  ->  { A ,  B }  ~~  { C ,  D } )
 
10-Dec-2024cbvreuw 2740 Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 2743 with a disjoint variable condition. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Dec-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
9-Dec-2024nninfwlpoim 7314 Decidable equality for ℕ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  om  e. WOmni )
 
8-Dec-2024nninfinfwlpolem 7313 Lemma for nninfinfwlpo 7315. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e. DECID  x  =  ( i  e.  om  |->  1o ) )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
8-Dec-2024nninfwlpoimlemdc 7312 Lemma for nninfwlpoim 7314. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
8-Dec-2024nninfwlpoimlemginf 7311 Lemma for nninfwlpoim 7314. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
 
8-Dec-2024nninfwlpoimlemg 7310 Lemma for nninfwlpoim 7314. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  G  e. )
 
7-Dec-2024nninfwlpor 7309 The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
 
7-Dec-2024nninfwlporlem 7308 Lemma for nninfwlpor 7309. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   &    |-  ( ph  ->  om  e. WOmni )   =>    |-  ( ph  -> DECID  X  =  Y )
 
7-Dec-2024domssr 6899 If  C is a superset of  B and  B dominates  A, then  C also dominates  A. (Contributed by BTernaryTau, 7-Dec-2024.)
 |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A 
 ~<_  C )
 
7-Dec-2024f1dom4g 6874 The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 6879 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
 |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X )  /\  F : A -1-1-> B )  ->  A  ~<_  B )
 
7-Dec-2024f1oen4g 6873 The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 6878 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
 |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X )  /\  F : A
 -1-1-onto-> B )  ->  A  ~~  B )
 
6-Dec-2024nninfwlporlemd 7307 Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   =>    |-  ( ph  ->  ( X  =  Y  <->  D  =  (
 i  e.  om  |->  1o ) ) )
 
3-Dec-2024nninfwlpo 7316 Decidability of equality for ℕ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
 
3-Dec-2024nninfdcinf 7306 The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( ph  ->  om  e. WOmni )   &    |-  ( ph  ->  N  e. )   =>    |-  ( ph  -> DECID  N  =  ( i  e.  om  |->  1o ) )
 
29-Nov-2024brdom2g 6866 Dominance relation. This variation of brdomg 6867 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 6867. (Revised by BTernaryTau, 29-Nov-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
 
28-Nov-2024basmexd 13059 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  G  e.  _V )
 
22-Nov-2024eliotaeu 5283 An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
 |-  ( A  e.  ( iota x ph )  ->  E! x ph )
 
22-Nov-2024eliota 5282 An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.)
 |-  ( A  e.  ( iota x ph )  <->  E. y ( A  e.  y  /\  A. x ( ph  <->  x  =  y
 ) ) )
 
18-Nov-2024basmex 13058 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.)
 |-  B  =  ( Base `  G )   =>    |-  ( A  e.  B  ->  G  e.  _V )
 
14-Nov-2024dcand 937 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
 |-  ( ph  -> DECID  ps )   &    |-  ( ph  -> DECID  ch )   =>    |-  ( ph  -> DECID 
 ( ps  /\  ch ) )
 
12-Nov-2024sravscag 14372 The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .s `  A ) )
 
12-Nov-2024srascag 14371 The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )
 
12-Nov-2024slotsdifipndx 13174 The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.)
 |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
 
11-Nov-2024bj-con1st 16025 Contraposition when the antecedent is a negated stable proposition. See con1dc 860. (Contributed by BJ, 11-Nov-2024.)
 |-  (STAB  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps 
 ->  ph ) ) )
 
11-Nov-2024slotsdifdsndx 13224 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( dist `  ndx )  /\  ( le `  ndx )  =/=  ( dist `  ndx ) )
 
11-Nov-2024plendxnocndx 13213 The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( oc `  ndx )
 
11-Nov-2024basendxnocndx 13212 The slot for the orthocomplementation is not the slot for the base set in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  ( Base `  ndx )  =/=  ( oc `  ndx )
 
11-Nov-2024slotsdifplendx 13209 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( le `  ndx )  /\  (TopSet `  ndx )  =/=  ( le `  ndx ) )
 
11-Nov-2024tsetndxnstarvndx 13193 The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  (TopSet `  ndx )  =/=  ( *r `  ndx )
 
11-Nov-2024ofeqd 6190 Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
 |-  ( ph  ->  R  =  S )   =>    |-  ( ph  ->  oF R  =  oF S )
 
11-Nov-2024const 856 Contraposition when the antecedent is a negated stable proposition. See comment of condc 857. (Contributed by BJ, 18-Nov-2023.) (Proof shortened by BJ, 11-Nov-2024.)
 |-  (STAB 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
10-Nov-2024slotsdifunifndx 13231 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
 |-  ( ( ( +g  ` 
 ndx )  =/=  ( UnifSet
 `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
 
7-Nov-2024ressbasd 13066 Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
 |-  ( ph  ->  R  =  ( Ws  A ) )   &    |-  ( ph  ->  B  =  (
 Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( A  i^i  B )  =  ( Base `  R ) )
 
6-Nov-2024oppraddg 14005 Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
 |-  O  =  (oppr `  R )   &    |- 
 .+  =  ( +g  `  R )   =>    |-  ( R  e.  V  ->  .+  =  ( +g  `  O ) )
 
6-Nov-2024opprbasg 14004 Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
 |-  O  =  (oppr `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  V  ->  B  =  ( Base `  O ) )
 
6-Nov-2024opprsllem 14003 Lemma for opprbasg 14004 and oppraddg 14005. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
 |-  O  =  (oppr `  R )   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( E `  ndx )  =/=  ( .r `  ndx )   =>    |-  ( R  e.  V  ->  ( E `  R )  =  ( E `  O ) )
 
4-Nov-2024lgsfvalg 15649 Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( M  -  1
 )  /  2 )
 )  +  1 ) 
 mod  M )  -  1
 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
 
3-Nov-2024znmul 14571 The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( .r `  U )  =  ( .r `  Y ) )
 
3-Nov-2024znadd 14570 The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
 
3-Nov-2024znbas2 14569 The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( Base `  U )  =  ( Base `  Y )
 )
 
3-Nov-2024znbaslemnn 14568 Lemma for znbas 14573. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  ( le `  ndx )   =>    |-  ( N  e.  NN0  ->  ( E `  U )  =  ( E `  Y ) )
 
3-Nov-2024zlmmulrg 14560 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
3-Nov-2024zlmplusgg 14559 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
3-Nov-2024zlmbasg 14558 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
3-Nov-2024zlmlemg 14557 Lemma for zlmbasg 14558 and zlmplusgg 14559. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
2-Nov-2024zlmsca 14561 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
1-Nov-2024plendxnvscandx 13208 The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( .s `  ndx )
 
1-Nov-2024plendxnscandx 13207 The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  (Scalar `  ndx )
 
1-Nov-2024plendxnmulrndx 13206 The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( .r `  ndx )
 
1-Nov-2024qsqeqor 10839 The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A ^ 2 )  =  ( B ^ 2
 ) 
 <->  ( A  =  B  \/  A  =  -u B ) ) )
 
31-Oct-2024dsndxnmulrndx 13221 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( .r `  ndx )
 
31-Oct-2024tsetndxnmulrndx 13192 The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( .r `  ndx )
 
31-Oct-2024tsetndxnbasendx 13190 The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( Base `  ndx )
 
31-Oct-2024basendxlttsetndx 13189 The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( Base `  ndx )  < 
 (TopSet `  ndx )
 
31-Oct-2024tsetndxnn 13188 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  e. 
 NN
 
30-Oct-2024basendxltedgfndx 15776 The index value of the  Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 30-Oct-2024.)
 |-  ( Base `  ndx )  < 
 (.ef `  ndx )
 
30-Oct-2024plendxnbasendx 13204 The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.)
 |-  ( le `  ndx )  =/=  ( Base `  ndx )
 
30-Oct-2024basendxltplendx 13203 The index value of the  Base slot is less than the index value of the  le slot. (Contributed by AV, 30-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( le `  ndx )
 
30-Oct-2024plendxnn 13202 The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
 |-  ( le `  ndx )  e.  NN
 
29-Oct-2024sradsg 14377 Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( dist `  W )  =  ( dist `  A )
 )
 
29-Oct-2024sratsetg 14374 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  (TopSet `  W )  =  (TopSet `  A ) )
 
29-Oct-2024sramulrg 14370 Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .r `  A ) )
 
29-Oct-2024sraaddgg 14369 Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( +g  `  W )  =  ( +g  `  A ) )
 
29-Oct-2024srabaseg 14368 Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( Base `  W )  =  ( Base `  A )
 )
 
29-Oct-2024sralemg 14367 Lemma for srabaseg 14368 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  (Scalar ` 
 ndx )  =/=  ( E `  ndx )   &    |-  ( .s `  ndx )  =/=  ( E `  ndx )   &    |-  ( .i `  ndx )  =/=  ( E `  ndx )   =>    |-  ( ph  ->  ( E `  W )  =  ( E `  A ) )
 
29-Oct-2024dsndxntsetndx 13223 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( dist `  ndx )  =/=  (TopSet `  ndx )
 
29-Oct-2024slotsdnscsi 13222 The slots Scalar,  .s and  .i are different from the slot  dist. (Contributed by AV, 29-Oct-2024.)
 |-  ( ( dist `  ndx )  =/=  (Scalar `  ndx )  /\  ( dist `  ndx )  =/=  ( .s `  ndx )  /\  ( dist ` 
 ndx )  =/=  ( .i `  ndx ) )
 
29-Oct-2024slotstnscsi 13194 The slots Scalar,  .s and  .i are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
 |-  ( (TopSet `  ndx )  =/=  (Scalar `  ndx )  /\  (TopSet `  ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )
 
29-Oct-2024ipndxnmulrndx 13173 The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( .r `  ndx )
 
29-Oct-2024ipndxnplusgndx 13172 The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( +g  `  ndx )
 
29-Oct-2024vscandxnmulrndx 13160 The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( .r `  ndx )
 
29-Oct-2024scandxnmulrndx 13155 The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( .r `  ndx )
 
29-Oct-2024fiubnn 11019 A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.)
 |-  ( ( A  C_  NN  /\  A  e.  Fin )  ->  E. x  e.  NN  A. y  e.  A  y 
 <_  x )
 
29-Oct-2024fiubz 11018 A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.)
 |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. x  e.  ZZ  A. y  e.  A  y 
 <_  x )
 
29-Oct-2024fiubm 11017 Lemma for fiubz 11018 and fiubnn 11019. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B 
 C_  QQ )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  E. x  e.  B  A. y  e.  A  y  <_  x )
 
28-Oct-2024edgfndxid 15775 The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 28-Oct-2024.)
 |-  ( G  e.  V  ->  (.ef `  G )  =  ( G `  (.ef ` 
 ndx ) ) )
 
28-Oct-2024unifndxntsetndx 13230 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  (TopSet `  ndx )
 
28-Oct-2024basendxltunifndx 13228 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( UnifSet `  ndx )
 
28-Oct-2024unifndxnn 13227 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  e. 
 NN
 
28-Oct-2024dsndxnbasendx 13219 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( Base `  ndx )
 
28-Oct-2024basendxltdsndx 13218 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( dist `  ndx )
 
28-Oct-2024dsndxnn 13217 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  e. 
 NN
 
27-Oct-2024bj-nnst 16017 Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 16263 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in  (  ->  ,  -.  ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in  (  ->  ,  <->  ,  -.  )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.)
 |-  -.  -. STAB  ph
 
27-Oct-2024bj-imnimnn 16012 If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 16011 as its last step. (Contributed by BJ, 27-Oct-2024.)
 |-  ( ph  ->  ps )   &    |-  ( -.  ph  ->  ps )   =>    |- 
 -.  -.  ps
 
25-Oct-2024nnwosdc 12526 Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( ( E. x  e.  NN  ph  /\  A. x  e.  NN DECID  ph )  ->  E. x  e.  NN  ( ph  /\  A. y  e.  NN  ( ps  ->  x  <_  y
 ) ) )
 
23-Oct-2024nnwodc 12523 Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.)
 |-  ( ( A  C_  NN  /\  E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
 
22-Oct-2024uzwodc 12524 Well-ordering principle: any inhabited decidable subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) (Revised by Jim Kingdon, 22-Oct-2024.)
 |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  ->  E. j  e.  S  A. k  e.  S  j  <_  k
 )
 
21-Oct-2024nnnotnotr 16263 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 854, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
 |-  -.  -.  ( -.  -.  ph  -> 
 ph )
 
21-Oct-2024unifndxnbasendx 13229 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  ( Base `  ndx )
 
21-Oct-2024ipndxnbasendx 13171 The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( Base `  ndx )
 
21-Oct-2024scandxnbasendx 13153 The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( Base `  ndx )
 
20-Oct-2024isprm5lem 12629 Lemma for isprm5 12630. The interesting direction (showing that one only needs to check prime divisors up to the square root of  P). (Contributed by Jim Kingdon, 20-Oct-2024.)
 |-  ( ph  ->  P  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )   &    |-  ( ph  ->  X  e.  ( 2 ... ( P  -  1
 ) ) )   =>    |-  ( ph  ->  -.  X  ||  P )
 
19-Oct-2024resseqnbasd 13072 The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
 |-  R  =  ( Ws  A )   &    |-  C  =  ( E `  W )   &    |-  ( E  = Slot  ( E `
  ndx )  /\  ( E `  ndx )  e. 
 NN )   &    |-  ( E `  ndx )  =/=  ( Base `  ndx )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  C  =  ( E `  R ) )
 
18-Oct-2024rmodislmod 14280 The right module  R induces a left module  L by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 14218 of a left module, see also islmod 14220. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
 |-  V  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  F  =  (Scalar `  R )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   &    |-  ( R  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( w  .x.  r )  e.  V  /\  ( ( w  .+  x ) 
 .x.  r )  =  ( ( w  .x.  r )  .+  ( x 
 .x.  r ) ) 
 /\  ( w  .x.  ( q  .+^  r ) )  =  ( ( w  .x.  q )  .+  ( w  .x.  r
 ) ) )  /\  ( ( w  .x.  ( q  .X.  r ) )  =  ( ( w  .x.  q )  .x.  r )  /\  ( w  .x.  .1.  )  =  w ) ) )   &    |-  .*  =  ( s  e.  K ,  v  e.  V  |->  ( v  .x.  s ) )   &    |-  L  =  ( R sSet  <. ( .s
 `  ndx ) ,  .*  >.
 )   =>    |-  ( F  e.  CRing  ->  L  e.  LMod )
 
18-Oct-2024mgpress 13860 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
 |-  S  =  ( Rs  A )   &    |-  M  =  (mulGrp `  R )   =>    |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
 
18-Oct-2024dsndxnplusgndx 13220 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024plendxnplusgndx 13205 The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( le `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024tsetndxnplusgndx 13191 The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024vscandxnscandx 13161 The slot for the scalar product is not the slot for the scalar field in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  (Scalar `  ndx )
 
18-Oct-2024vscandxnplusgndx 13159 The slot for the scalar product is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024vscandxnbasendx 13158 The slot for the scalar product is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( Base `  ndx )
 
18-Oct-2024scandxnplusgndx 13154 The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024starvndxnmulrndx 13143 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( .r `  ndx )
 
18-Oct-2024starvndxnplusgndx 13142 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( +g  `  ndx )
 
18-Oct-2024starvndxnbasendx 13141 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( Base `  ndx )
 
17-Oct-2024basendxltplusgndx 13112 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( +g  `  ndx )
 
17-Oct-2024plusgndxnn 13110 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
 |-  ( +g  `  ndx )  e.  NN
 
17-Oct-2024elnndc 9775 Membership of an integer in  NN is decidable. (Contributed by Jim Kingdon, 17-Oct-2024.)
 |-  ( N  e.  ZZ  -> DECID  N  e.  NN )
 
14-Oct-20242zinfmin 11720 Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> inf ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  A ,  B )
 )
 
14-Oct-2024mingeb 11719 Equivalence of  <_ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <-> inf ( { A ,  B } ,  RR ,  <  )  =  A ) )
 
13-Oct-2024edgfndxnn 15774 The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.)
 |-  (.ef `  ndx )  e. 
 NN
 
13-Oct-2024edgfndx 15773 Index value of the df-edgf 15771 slot. (Contributed by AV, 13-Oct-2024.) (New usage is discouraged.)
 |-  (.ef `  ndx )  = ; 1
 8
 
13-Oct-2024prdsvallem 13271 Lemma for prdsval 13272. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13272, dependency on df-hom 13100 removed. (Revised by AV, 13-Oct-2024.)
 |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
  x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  e.  _V
 
13-Oct-2024pcxnn0cl 12799 Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  pCnt  N )  e. NN0* )
 
13-Oct-2024xnn0letri 9967 Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( A  <_  B  \/  B  <_  A ) )
 
13-Oct-2024xnn0dcle 9966 Decidability of  <_ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )
 
9-Oct-2024nn0leexp2 10899 Ordering law for exponentiation. (Contributed by Jim Kingdon, 9-Oct-2024.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  NN0 )  /\  1  <  A )  ->  ( M 
 <_  N  <->  ( A ^ M )  <_  ( A ^ N ) ) )
 
8-Oct-2024pclemdc 12777 Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e. 
 ZZ DECID  x  e.  A )
 
8-Oct-2024elnn0dc 9774 Membership of an integer in  NN0 is decidable. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  ( N  e.  ZZ  -> DECID  N  e.  NN0 )
 
7-Oct-2024pclemub 12776 Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
 
7-Oct-2024pclem0 12775 Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  0  e.  A )
 
7-Oct-2024nn0ltexp2 10898 Special case of ltexp2 15580 which we use here because we haven't yet defined df-rpcxp 15498 which is used in the current proof of ltexp2 15580. (Contributed by Jim Kingdon, 7-Oct-2024.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  NN0 )  /\  1  <  A )  ->  ( M  <  N  <->  ( A ^ M )  <  ( A ^ N ) ) )
 
6-Oct-2024suprzcl2dc 10426 The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 8088.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.)
 |-  ( ph  ->  A  C_ 
 ZZ )   &    |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )   &    |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )   &    |-  ( ph  ->  E. x  x  e.  A )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
 
5-Oct-2024zsupssdc 10425 An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 8088.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
 |-  ( ph  ->  A  C_ 
 ZZ )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )   &    |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )   =>    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  B  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
5-Oct-2024suprzubdc 10423 The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
 |-  ( ph  ->  A  C_ 
 ZZ )   &    |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )   &    |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  B 
 <_  sup ( A ,  RR ,  <  ) )
 
1-Oct-2024infex2g 7169 Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
 |-  ( A  e.  C  -> inf ( B ,  A ,  R )  e.  _V )
 
30-Sep-2024unbendc 12991 An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~ 
 NN )
 
30-Sep-2024prmdc 12618 Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.)
 |-  ( N  e.  NN  -> DECID  N  e.  Prime )
 
30-Sep-2024dcfi 7116 Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  A. x  e.  A  ph )
 
30-Sep-2024cbvriotavw 5938 Change bound variable in a restricted description binder. Version of cbvriotav 5940 with a disjoint variable condition. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
30-Sep-2024cbviotavw 5260 Change bound variables in a description binder. Version of cbviotav 5261 with a disjoint variable condition. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota x ph )  =  ( iota
 y ps )
 
29-Sep-2024ssnnct 12984 A decidable subset of  NN is countable. (Contributed by Jim Kingdon, 29-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A )  ->  E. f  f : om -onto-> ( A 1o )
 )
 
29-Sep-2024ssnnctlemct 12983 Lemma for ssnnct 12984. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  1 )   =>    |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A )  ->  E. f  f : om -onto-> ( A 1o )
 )
 
28-Sep-2024nninfdcex 10424 A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  E. y  y  e.  A )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )
 
27-Sep-2024infregelbex 9761 Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( B  <_ inf ( A ,  RR ,  <  )  <->  A. z  e.  A  B  <_  z ) )
 
26-Sep-2024nninfdclemp1 12987 Lemma for nninfdc 12990. Each element of the sequence  F is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   &    |-  ( ph  ->  U  e.  NN )   =>    |-  ( ph  ->  ( F `  U )  < 
 ( F `  ( U  +  1 )
 ) )
 
26-Sep-2024nnminle 12522 The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12521. (Contributed by Jim Kingdon, 26-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  B  e.  A )  -> inf ( A ,  RR ,  <  )  <_  B )
 
25-Sep-2024nninfdclemcl 12985 Lemma for nninfdc 12990. (Contributed by Jim Kingdon, 25-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  P  e.  A )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  ( P ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) Q )  e.  A )
 
24-Sep-2024nninfdclemlt 12988 Lemma for nninfdc 12990. The function from nninfdclemf 12986 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   &    |-  ( ph  ->  U  e.  NN )   &    |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  U  <  V )   =>    |-  ( ph  ->  ( F `  U )  <  ( F `  V ) )
 
23-Sep-2024nninfdc 12990 An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om  ~<_  A )
 
23-Sep-2024nninfdclemf1 12989 Lemma for nninfdc 12990. The function from nninfdclemf 12986 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   =>    |-  ( ph  ->  F : NN -1-1-> A )
 
23-Sep-2024nninfdclemf 12986 Lemma for nninfdc 12990. A function from the natural numbers into  A. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ph  ->  A  C_ 
 NN )   &    |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )   &    |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )   &    |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )   &    |-  F  =  seq 1
 ( ( y  e. 
 NN ,  z  e. 
 NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
 y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )   =>    |-  ( ph  ->  F : NN --> A )
 
23-Sep-2024nnmindc 12521 An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.)
 |-  ( ( A  C_  NN  /\  A. x  e. 
 NN DECID  x  e.  A  /\  E. y  y  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
 
23-Sep-2024breng 6864 Equinumerosity relation. This variation of bren 6865 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 6865. (Revised by BTernaryTau, 23-Sep-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~~  B 
 <-> 
 E. f  f : A -1-1-onto-> B ) )
 
19-Sep-2024ssomct 12982 A decidable subset of  om is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
 |-  ( ( A  C_  om 
 /\  A. x  e.  om DECID  x  e.  A )  ->  E. f  f : om -onto-> ( A 1o ) )
 
14-Sep-2024nnpredlt 4693 The predecessor (see nnpredcl 4692) of a nonzero natural number is less than (see df-iord 4434) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
 |-  ( ( A  e.  om 
 /\  A  =/=  (/) )  ->  U. A  e.  A )
 
13-Sep-2024nninfisollemeq 7267 Lemma for nninfisol 7268. The case where  N is a successor and  N and  X are equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =/=  (/) )   &    |-  ( ph  ->  ( X `  U. N )  =  1o )   =>    |-  ( ph  -> DECID 
 ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
13-Sep-2024nninfisollemne 7266 Lemma for nninfisol 7268. A case where  N is a successor and  N and  X are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =/=  (/) )   &    |-  ( ph  ->  ( X `  U. N )  =  (/) )   =>    |-  ( ph  -> DECID  ( i  e.  om  |->  if (
 i  e.  N ,  1o ,  (/) ) )  =  X )
 
13-Sep-2024nninfisollem0 7265 Lemma for nninfisol 7268. The case where  N is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =  (/) )   =>    |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
12-Sep-2024nninfisol 7268 Finite elements of ℕ are isolated. That is, given a natural number and any element of ℕ, it is decidable whether the natural number (when converted to an element of ℕ) is equal to the given element of ℕ. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence  X to decide whether it is equal to  N (in fact, you only need to look at two elements and  N tells you where to look).

By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7315). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)

 |-  ( ( N  e.  om 
 /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
8-Sep-2024relopabv 4823 A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopab 4825. (Contributed by SN, 8-Sep-2024.)
 |- 
 Rel  { <. x ,  y >.  |  ph }
 
7-Sep-2024eulerthlemfi 12716 Lemma for eulerth 12721. The set  S is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   =>    |-  ( ph  ->  S  e.  Fin )
 
7-Sep-2024modqexp 10855 Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A ^ C )  mod  D )  =  ( ( B ^ C )  mod  D ) )
 
5-Sep-2024eulerthlemh 12719 Lemma for eulerth 12721. A permutation of  ( 1 ... ( phi `  N ) ). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 5-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   &    |-  H  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) ) 
 |->  ( ( A  x.  ( F `  y ) )  mod  N ) ) )   =>    |-  ( ph  ->  H : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
 
2-Sep-2024eulerthlemth 12720 Lemma for eulerth 12721. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   =>    |-  ( ph  ->  ( ( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod 
 N ) )
 
2-Sep-2024eulerthlema 12718 Lemma for eulerth 12721. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   =>    |-  ( ph  ->  ( (
 ( A ^ ( phi `  N ) )  x.  prod_ x  e.  (
 1 ... ( phi `  N ) ) ( F `
  x ) ) 
 mod  N )  =  (
 prod_ x  e.  (
 1 ... ( phi `  N ) ) ( ( A  x.  ( F `
  x ) ) 
 mod  N )  mod  N ) )
 
2-Sep-2024eulerthlemrprm 12717 Lemma for eulerth 12721. 
N and  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
 |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 ) )   &    |-  S  =  {
 y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }   &    |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )   =>    |-  ( ph  ->  ( N  gcd  prod_ x  e.  (
 1 ... ( phi `  N ) ) ( F `
  x ) )  =  1 )
 
1-Sep-2024qusmul2 14458 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
 |-  Q  =  ( R 
 /.s 
 ( R ~QG  I ) )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .X. 
 =  ( .r `  Q )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( [ X ] ( R ~QG  I )  .X.  [ Y ] ( R ~QG  I )
 )  =  [ ( X  .x.  Y ) ]
 ( R ~QG  I ) )
 
30-Aug-2024fprodap0f 12113 A finite product of terms apart from zero is apart from zero. A version of fprodap0 12098 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B #  0 )
 
28-Aug-2024fprodrec 12106 The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B )  =  (
 1  /  prod_ k  e.  A  B ) )
 
26-Aug-2024exmidontri2or 7396 Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
26-Aug-2024exmidontri 7392 Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
26-Aug-2024ontri2orexmidim 4641 Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4640. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  -> DECID  ph )
 
26-Aug-2024ontriexmidim 4591 Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4590. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  ph )
 
25-Aug-2024onntri2or 7399 Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
25-Aug-2024onntri3or 7398 Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
 
25-Aug-2024csbcow 3115 Composition law for chained substitutions into a class. Version of csbco 3114 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by GG, 25-Aug-2024.)
 |-  [_ A  /  y ]_ [_ y  /  x ]_ B  =  [_ A  /  x ]_ B
 
25-Aug-2024cbvreuvw 2751 Version of cbvreuv 2747 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
25-Aug-2024cbvrexvw 2750 Version of cbvrexv 2746 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
25-Aug-2024cbvralvw 2749 Version of cbvralv 2745 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
25-Aug-2024cbvabw 2332 Version of cbvab 2333 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  |  ph
 }  =  { y  |  ps }
 
25-Aug-2024nfsbv 1978 If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  z is distinct from  x and  y. Version of nfsb 1977 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on  x ,  y. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |- 
 F/ z ph   =>    |- 
 F/ z [ y  /  x ] ph
 
25-Aug-2024cbvexvw 1947 Change bound variable. See cbvexv 1945 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1474. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
25-Aug-2024cbvalvw 1946 Change bound variable. See cbvalv 1944 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1474. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
25-Aug-2024nfal 1602 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1536. (Revised by GG, 25-Aug-2024.)
 |- 
 F/ x ph   =>    |- 
 F/ x A. y ph
 
24-Aug-2024gcdcomd 12461 The  gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  N )  =  ( N  gcd  M ) )
 
21-Aug-2024dvds2addd 12306 Deduction form of dvds2add 12302. (Contributed by SN, 21-Aug-2024.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  K 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  ( M  +  N ) )
 
18-Aug-2024prdsmulr 13277 Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  dom 
 R  =  I )   &    |-  .x. 
 =  ( .r `  P )   =>    |-  ( ph  ->  .x.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
 `  ( R `  x ) ) ( g `  x ) ) ) ) )
 
18-Aug-2024prdsplusg 13276 Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  dom 
 R  =  I )   &    |-  .+  =  ( +g  `  P )   =>    |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x ) ) ( g `
  x ) ) ) ) )
 
18-Aug-2024prdsbas 13275 Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  dom 
 R  =  I )   =>    |-  ( ph  ->  B  =  X_ x  e.  I  (
 Base `  ( R `  x ) ) )
 
18-Aug-2024prdssca 13274 Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   =>    |-  ( ph  ->  S  =  (Scalar `  P )
 )
 
18-Aug-2024prdsval 13272 Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  K  =  (
 Base `  S )   &    |-  ( ph  ->  dom  R  =  I )   &    |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x ) ) )   &    |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x ) ) ( g `  x ) ) ) ) )   &    |-  ( ph  ->  .X. 
 =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
  x ) ( .r `  ( R `
  x ) ) ( g `  x ) ) ) ) )   &    |-  ( ph  ->  .x. 
 =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
  x ) ) ( g `  x ) ) ) ) )   &    |-  ( ph  ->  .,  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x ) ) ( g `  x ) ) ) ) ) )   &    |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R ) ) )   &    |-  ( ph  ->  .<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x ) ) ( g `  x ) ) } )   &    |-  ( ph  ->  D  =  ( f  e.  B ,  g  e.  B  |->  sup (
 ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x ) ) ( g `  x ) ) )  u.  {
 0 } ) , 
 RR* ,  <  ) ) )   &    |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( ( f `  x ) ( Hom  `  ( R `  x ) ) ( g `
  x ) ) ) )   &    |-  ( ph  ->  .xb 
 =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
 ) H c ) ,  e  e.  ( H `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x ) ,  (
 ( 2nd `  a ) `  x ) >. (comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  P  =  ( ( { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )  u.  ( { <. (TopSet `  ndx ) ,  O >. , 
 <. ( le `  ndx ) ,  .<_  >. ,  <. (
 dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
 <. (comp `  ndx ) , 
 .xb  >. } ) ) )
 
18-Aug-2024df-prds 13266 Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  X_s  =  ( s  e.  _V ,  r  e.  _V  |->  [_ X_ x  e.  dom  r ( Base `  (
 r `  x )
 )  /  v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
  x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
 Base `  ndx ) ,  v >. ,  <. ( +g  ` 
 ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x ) ) ( g `
  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `
  x ) ( .r `  ( r `
  x ) ) ( g `  x ) ) ) )
 >. }  u.  { <. (Scalar `  ndx ) ,  s >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  s
 ) ,  g  e.  v  |->  ( x  e. 
 dom  r  |->  ( f ( .s `  (
 r `  x )
 ) ( g `  x ) ) ) ) >. ,  <. ( .i
 `  ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
  x ) ( .i `  ( r `
  x ) ) ( g `  x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
 ) >. ,  <. ( le ` 
 ndx ) ,  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  ( r `  x ) ) ( g `
  x ) ) } >. ,  <. ( dist ` 
 ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  sup ( ( ran  ( x  e.  dom  r  |->  ( ( f `  x ) ( dist `  (
 r `  x )
 ) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. , 
 <. (comp `  ndx ) ,  ( a  e.  (
 v  X.  v ) ,  c  e.  v  |->  ( d  e.  (
 ( 2nd `  a ) h c ) ,  e  e.  ( h `
  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <. ( ( 1st `  a
 ) `  x ) ,  ( ( 2nd `  a
 ) `  x ) >. (comp `  ( r `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
 ) )
 
17-Aug-2024fprodcl2lem 12082 Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
 
16-Aug-2024if0ab 16079 Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion  |-  if (
ph ,  A ,  (/) )  C_  A and therefore, using elpwg 3637,  |-  ( A  e.  V  ->  if ( ph ,  A ,  (/) )  e.  ~P A
), from which fmelpw1o 7400 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

 |-  if ( ph ,  A ,  (/) )  =  { x  e.  A  |  ph }
 
16-Aug-2024fprodunsn 12081 Multiply in an additional term in a finite product. See also fprodsplitsn 12110 which is the same but with a  F/ k
ph hypothesis in place of the distinct variable condition between  ph and  k. (Contributed by Jim Kingdon, 16-Aug-2024.)
 |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D ) )
 
15-Aug-2024bj-charfundcALT 16082 Alternate proof of bj-charfundc 16081. It was expected to be much shorter since it uses bj-charfun 16080 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )   =>    |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
  x )  =  (/) ) ) )
 
15-Aug-2024bj-charfun 16080 Properties of the characteristic function on the class  X of the class  A. (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )   =>    |-  ( ph  ->  (
 ( F : X --> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X 
 \  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\ 
 A. x  e.  ( X  \  A ) ( F `  x )  =  (/) ) ) )
 
15-Aug-2024cnstab 8760 Equality of complex numbers is stable. Stability here means  -.  -.  A  =  B  ->  A  =  B as defined at df-stab 835. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  -> STAB 
 A  =  B )
 
15-Aug-2024subap0d 8759 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   =>    |-  ( ph  ->  ( A  -  B ) #  0 )
 
15-Aug-2024fmelpw1o 7400 With a formula  ph one can associate an element of 
~P 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than T. and F., by nndc 855, which translate to  1o and  (/) respectively by iftrue 3587 and iffalse 3590, giving pwtrufal 16274).

As proved in if0ab 16079, the associated element of  ~P 1o is the extension, in  ~P 1o, of the formula  ph. (Contributed by BJ, 15-Aug-2024.)

 |- 
 if ( ph ,  1o ,  (/) )  e.  ~P 1o
 
15-Aug-2024ifexd 4552 Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )
 
15-Aug-2024ifelpwun 4551 Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )
 
15-Aug-2024ifelpwund 4550 Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
 
15-Aug-2024ifelpwung 4549 Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
 
15-Aug-2024ifidss 3598 A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.)
 |- 
 if ( ph ,  A ,  A )  C_  A
 
15-Aug-2024ifssun 3597 A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
 |- 
 if ( ph ,  A ,  B )  C_  ( A  u.  B )
 
12-Aug-2024exmidontriimlem2 7372 Lemma for exmidontriim 7375. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
 
12-Aug-2024exmidontriimlem1 7371 Lemma for exmidontriim 7375. A variation of r19.30dc 2658. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps 
 \/  ch )  /\ EXMID )  ->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps  \/  A. x  e.  A  ch ) )
 
11-Aug-2024nndc 855 Double negation of decidability of a formula. Intuitionistic logic refutes the negation of decidability (but does not prove decidability) of any formula.

This should not trick the reader into thinking that  -.  -. EXMID is provable in intuitionistic logic. Indeed, if we could quantify over formula metavariables, then generalizing nnexmid 854 over  ph would give " |-  A. ph -.  -. DECID  ph", but EXMID is " A. phDECID 
ph", so proving 
-.  -. EXMID would amount to proving " -.  -.  A. phDECID  ph", which is not implied by the above theorem. Indeed, the converse of nnal 1675 does not hold. Since our system does not allow quantification over formula metavariables, we can reproduce this argument by representing formulas as subsets of  ~P 1o, like we do in our definition of EXMID (df-exmid 4258): then, we can prove  A. x  e. 
~P 1o -.  -. DECID  x  =  1o but we cannot prove  -.  -.  A. x  e.  ~P 1oDECID  x  =  1o because the converse of nnral 2500 does not hold.

Actually,  -.  -. EXMID is not provable in intuitionistic logic since intuitionistic logic has models satisfying  -. EXMID and noncontradiction holds (pm3.24 697). (Contributed by BJ, 9-Oct-2019.) Add explanation on non-provability of  -. 
-. EXMID. (Revised by BJ, 11-Aug-2024.)

 |- 
 -.  -. DECID  ph
 
10-Aug-2024exmidontriim 7375 Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  (EXMID 
 ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
10-Aug-2024exmidontriimlem4 7374 Lemma for exmidontriim 7375. The induction step for the induction on  A. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
10-Aug-2024exmidontriimlem3 7373 Lemma for exmidontriim 7375. What we get to do based on induction on both  A and  B. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
10-Aug-2024nnnninf2 7262 Canonical embedding of  suc  om into ℕ. (Contributed by BJ, 10-Aug-2024.)
 |-  ( N  e.  suc  om 
 ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e. )
 
10-Aug-2024infnninf 7259 The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4743 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
 |-  ( i  e.  om  |->  1o )  e.
 
9-Aug-2024ss1o0el1o 7043 Reformulation of ss1o0el1 4260 using  1o instead of 
{ (/) }. (Contributed by BJ, 9-Aug-2024.)
 |-  ( A  C_  1o  ->  ( (/)  e.  A  <->  A  =  1o ) )
 
9-Aug-2024pw1dc0el 7041 Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  ~P  1oDECID  (/)  e.  x )
 
9-Aug-2024ss1o0el1 4260 A subclass of  { (/) } contains the empty set if and only if it equals  { (/) }. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
 |-  ( A  C_  { (/) }  ->  ( (/)  e.  A  <->  A  =  { (/)
 } ) )
 
8-Aug-2024pw1dc1 7044 If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  ~P  1oDECID  x  =  1o )
 
7-Aug-2024pw1fin 7040 Excluded middle is equivalent to the power set of  1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
 |-  (EXMID  <->  ~P 1o  e.  Fin )
 
7-Aug-2024elomssom 4674 A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4675. (Revised by BJ, 7-Aug-2024.)
 |-  ( A  e.  om  ->  A  C_  om )
 
6-Aug-2024bj-charfunbi 16084 In an ambient set  X, if membership in  A is stable, then it is decidable if and only if  A has a characteristic function.

This characterization can be applied to singletons when the set  X has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  A. x  e.  X STAB  x  e.  A )   =>    |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A 
 <-> 
 E. f  e.  ( 2o  ^m  X ) (
 A. x  e.  ( X  i^i  A ) ( f `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( f `
  x )  =  (/) ) ) )
 
6-Aug-2024bj-charfunr 16083 If a class  A has a "weak" characteristic function on a class  X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

 |-  ( ph  ->  E. f  e.  ( om  ^m  X ) (
 A. x  e.  ( X  i^i  A ) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `  x )  =  (/) ) )   =>    |-  ( ph  ->  A. x  e.  X DECID 
 -.  x  e.  A )
 
6-Aug-2024bj-charfundc 16081 Properties of the characteristic function on the class  X of the class  A, provided membership in  A is decidable in  X. (Contributed by BJ, 6-Aug-2024.)
 |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )   =>    |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
  x )  =  (/) ) ) )
 
6-Aug-2024prodssdc 12066 Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>=
 `  M ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
5-Aug-2024fnmptd 16078 The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  F  Fn  A )
 
5-Aug-2024funmptd 16077 The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5331, then prove funmptd 16077 from it, and then prove funmpt 5332 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   =>    |-  ( ph  ->  Fun  F )
 
5-Aug-2024bj-dcfal 16029 The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.)
 |- DECID F.
 
5-Aug-2024bj-dctru 16027 The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.)
 |- DECID T.
 
5-Aug-2024bj-stfal 16016 The false truth value is stable. (Contributed by BJ, 5-Aug-2024.)
 |- STAB F.
 
5-Aug-2024bj-sttru 16014 The true truth value is stable. (Contributed by BJ, 5-Aug-2024.)
 |- STAB T.
 
5-Aug-2024prod1dc 12063 Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
 
5-Aug-20242ssom 6640 The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
 |- 
 2o  C_  om
 
2-Aug-2024onntri52 7397 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
2-Aug-2024onntri24 7395 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
2-Aug-2024onntri45 7394 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
 
2-Aug-2024onntri51 7393 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2-Aug-2024onntri13 7391 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e. 
 On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2-Aug-2024onntri35 7390 Double negated ordinal trichotomy.

There are five equivalent statements: (1)  -.  -.  A. x  e.  On A. y  e.  On ( x  e.  y  \/  x  =  y  \/  y  e.  x ), (2)  -.  -.  A. x  e.  On A. y  e.  On ( x  C_  y  \/  y  C_  x ), (3)  A. x  e.  On A. y  e.  On -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ), (4)  A. x  e.  On A. y  e.  On -.  -.  (
x  C_  y  \/  y  C_  x ), and (5)  -.  -. EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7391), (3) implies (5) (onntri35 7390), (5) implies (1) (onntri51 7393), (2) implies (4) (onntri24 7395), (4) implies (5) (onntri45 7394), and (5) implies (2) (onntri52 7397).

Another way of stating this is that EXMID is equivalent to trichotomy, either the  x  e.  y  \/  x  =  y  \/  y  e.  x or the  x  C_  y  \/  y  C_  x form, as shown in exmidontri 7392 and exmidontri2or 7396, respectively. Thus  -.  -. EXMID is equivalent to (1) or (2). In addition, 
-.  -. EXMID is equivalent to (3) by onntri3or 7398 and (4) by onntri2or 7399.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  -. EXMID )
 
1-Aug-2024nnral 2500 The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1675. (Contributed by Jim Kingdon, 1-Aug-2024.)
 |-  ( -.  -.  A. x  e.  A  ph  ->  A. x  e.  A  -.  -.  ph )
 
31-Jul-20243nsssucpw1 7389 Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
 
31-Jul-2024sucpw1nss3 7388 Negated excluded middle implies that the successor of the power set of  1o is not a subset of  3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_ 
 3o )
 
30-Jul-2024psrbagf 14599 A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( F  e.  D  ->  F : I --> NN0 )
 
30-Jul-20243nelsucpw1 7387 Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  3o  e.  suc  ~P 1o
 
30-Jul-2024sucpw1nel3 7386 The successor of the power set of 
1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  suc  ~P 1o  e.  3o
 
30-Jul-2024sucpw1ne3 7385 Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
 
30-Jul-2024pw1nel3 7384 Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
 
30-Jul-2024pw1ne3 7383 The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  3o
 
30-Jul-2024pw1ne1 7382 The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  1o
 
30-Jul-2024pw1ne0 7381 The power set of  1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  (/)
 
29-Jul-2024grpcld 13513 Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
29-Jul-2024pw1on 7379 The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
 |- 
 ~P 1o  e.  On
 
28-Jul-2024exmidpweq 7039 Excluded middle is equivalent to the power set of  1o being  2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
 |-  (EXMID  <->  ~P 1o  =  2o )
 
27-Jul-2024dcapnconstALT 16341 Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 16340 by means of dceqnconst 16339. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
27-Jul-2024reap0 16337 Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  RR DECID  z #  0 )
 
26-Jul-2024nconstwlpolemgt0 16343 Lemma for nconstwlpo 16345. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )   =>    |-  ( ph  ->  0  <  A )
 
26-Jul-2024nconstwlpolem0 16342 Lemma for nconstwlpo 16345. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  A. x  e.  NN  ( G `  x )  =  0 )   =>    |-  ( ph  ->  A  =  0 )
 
24-Jul-2024tridceq 16335 Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 16322 and redcwlpo 16334). Thus, this is an analytic analogue to lpowlpo 7303. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  A. x  e.  RR  A. y  e. 
 RR DECID  x  =  y )
 
24-Jul-2024iswomni0 16330 Weak omniscience stated in terms of equality with  0. Like iswomninn 16329 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  0 ) )
 
24-Jul-2024lpowlpo 7303 LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7302. There is an analogue in terms of analytic omniscience principles at tridceq 16335. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( om  e. Omni  ->  om  e. WOmni )
 
23-Jul-2024nconstwlpolem 16344 Lemma for nconstwlpo 16345. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   &    |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i
 ) )  x.  ( G `  i ) )   =>    |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
 
23-Jul-2024dceqnconst 16339 Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16334 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f
 ( f : RR --> ZZ  /\  ( f `  0 )  =  0  /\  A. x  e.  RR+  ( f `  x )  =/=  0 ) )
 
23-Jul-2024redc0 16336 Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y 
 <-> 
 A. z  e.  RR DECID  z  =  0 )
 
23-Jul-2024canth 5925 No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1526 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
 |-  A  e.  _V   =>    |-  -.  F : A -onto-> ~P A
 
22-Jul-2024nconstwlpo 16345 Existence of a certain non-constant function from reals to integers implies  om  e. WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   =>    |-  ( ph  ->  om  e. WOmni )
 
15-Jul-2024fprodseq 12060 The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( 
 seq 1 (  x. 
 ,  ( n  e. 
 NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
 
14-Jul-2024rexbid2 2515 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
14-Jul-2024ralbid2 2514 Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch )
 ) )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
12-Jul-20242irrexpqap 15617 There exist real numbers  a and  b which are irrational (in the sense of being apart from any rational number) such that  ( a ^ b ) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers  ( sqr `  2 ) and  ( 2 logb  9 ), see sqrt2irrap 12668, 2logb9irrap 15616 and sqrt2cxp2logb9e3 15614. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
 |- 
 E. a  e.  RR  E. b  e.  RR  ( A. p  e.  QQ  a #  p  /\  A. q  e.  QQ  b #  q  /\  ( a  ^c  b )  e.  QQ )
 
12-Jul-20242logb9irrap 15616 Example for logbgcd1irrap 15609. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.)
 |-  ( Q  e.  QQ  ->  ( 2 logb  9 ) #  Q )
 
12-Jul-2024erlecpbl 13331 Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A N B  <->  C N D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( A N B  <->  C N D ) ) )
 
12-Jul-2024ercpbl 13330 Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  (
 ( ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  ( a  .+  b )  e.  V )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
 
12-Jul-2024ercpbllemg 13329 Lemma for ercpbl 13330. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   =>    |-  ( ph  ->  (
 ( F `  A )  =  ( F `  B )  <->  A  .~  B ) )
 
12-Jul-2024divsfvalg 13328 Value of the function in qusval 13322. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
12-Jul-2024divsfval 13327 Value of the function in qusval 13322. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
11-Jul-2024logbgcd1irraplemexp 15607 Lemma for logbgcd1irrap 15609. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ph  ->  X  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  ( X  gcd  B )  =  1 )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( X ^ N ) #  ( B ^ M ) )
 
11-Jul-2024reapef 15417 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( exp `  A ) #  ( exp `  B )
 ) )
 
10-Jul-2024apcxp2 15578 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
 |-  ( ( ( A  e.  RR+  /\  A #  1
 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C  <->  ( A  ^c  B ) #  ( A 
 ^c  C ) ) )
 
9-Jul-2024logbgcd1irraplemap 15608 Lemma for logbgcd1irrap 15609. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
 |-  ( ph  ->  X  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  ( X  gcd  B )  =  1 )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )
 
9-Jul-2024apexp1 10907 Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
 
5-Jul-2024logrpap0 15516 The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.)
 |-  ( ( A  e.  RR+  /\  A #  1 )  ->  ( log `  A ) #  0 )
 
3-Jul-2024rplogbval 15584 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  (
 ( log `  X )  /  ( log `  B ) ) )
 
3-Jul-2024logrpap0d 15517 Deduction form of logrpap0 15516. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  ( log `  A ) #  0 )
 
3-Jul-2024logrpap0b 15515 The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( A  e.  RR+  ->  ( A #  1  <->  ( log `  A ) #  0 ) )
 
28-Jun-20242o01f 16269 Mapping zero and one between  om and  NN0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
 
28-Jun-2024012of 16268 Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
 
27-Jun-2024iooreen 16314 An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.)
 |-  (
 0 (,) 1 )  ~~  RR
 
27-Jun-2024iooref1o 16313 A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
 |-  F  =  ( x  e.  RR  |->  ( 1  /  (
 1  +  ( exp `  x ) ) ) )   =>    |-  F : RR -1-1-onto-> ( 0 (,) 1
 )
 
25-Jun-2024neapmkvlem 16346 Lemma for neapmkv 16347. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  (
 ( ph  /\  A  =/=  1 )  ->  A #  1
 )   =>    |-  ( ph  ->  ( -.  A. x  e.  NN  ( F `  x )  =  1  ->  E. x  e.  NN  ( F `  x )  =  0
 ) )
 
25-Jun-2024ismkvnn 16332 The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
25-Jun-2024ismkvnnlem 16331 Lemma for ismkvnn 16332. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
25-Jun-2024enmkvlem 7296 Lemma for enmkv 7297. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  ->  B  e. Markov ) )
 
24-Jun-2024neapmkv 16347 If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  ->  om  e. Markov )
 
24-Jun-2024dcapnconst 16340 Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 16322 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 16339 and in fact this theorem can be proved using dceqnconst 16339 as shown at dcapnconstALT 16341. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
24-Jun-2024enmkv 7297 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6546 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
 
21-Jun-2024redcwlpolemeq1 16333 Lemma for redcwlpo 16334. A biconditionalized version of trilpolemeq1 16319. (Contributed by Jim Kingdon, 21-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  ( A  =  1  <->  A. x  e.  NN  ( F `  x )  =  1 ) )
 
20-Jun-2024redcwlpo 16334 Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 16333). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10431 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  om  e. WOmni )
 
20-Jun-2024iswomninn 16329 Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7301 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
20-Jun-2024iswomninnlem 16328 Lemma for iswomnimap 7301. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
20-Jun-2024enwomni 7305 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either  om  e. WOmni or  NN0  e. WOmni. The former is a better match to conventional notation in the sense that df2o3 6546 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )
 
20-Jun-2024enwomnilem 7304 Lemma for enwomni 7305. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni ) )
 
19-Jun-2024rpabscxpbnd 15579 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  0  <  ( Re `  B ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <_  M )   =>    |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
 ( abs `  B )  x.  pi ) ) ) )
 
16-Jun-2024rpcxpsqrt 15561 The exponential function with exponent 
1  /  2 exactly matches the square root function, and thus serves as a suitable generalization to other  n-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.)
 |-  ( A  e.  RR+  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A ) )
 
16-Jun-2024biadanid 616 Deduction associated with biadani 614. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  ( ps 
 <-> 
 th ) )   =>    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )
 
13-Jun-2024rpcxpadd 15544 Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  ^c 
 ( B  +  C ) )  =  (
 ( A  ^c  B )  x.  ( A  ^c  C ) ) )
 
12-Jun-2024cxpap0 15543 Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B ) #  0 )
 
12-Jun-2024rpcncxpcl 15541 Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
 
12-Jun-2024rpcxp0 15537 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( A  e.  RR+  ->  ( A  ^c  0 )  =  1 )
 
12-Jun-2024cxpexpnn 15535 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  ^c  B )  =  ( A ^ B ) )
 
12-Jun-2024cxpexprp 15534 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  ZZ )  ->  ( A  ^c  B )  =  ( A ^ B ) )
 
12-Jun-2024rpcxpef 15533 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A )
 ) ) )
 
12-Jun-2024df-rpcxp 15498 Define the power function on complex numbers. Because df-relog 15497 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |- 
 ^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  (
 y  x.  ( log `  x ) ) ) )
 
10-Jun-2024trirec0xor 16324 Version of trirec0 16323 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/_  x  =  0 )
 )
 
10-Jun-2024trirec0 16323 Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 16322). (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/  x  =  0 ) )
 
9-Jun-2024omniwomnimkv 7302 A set is omniscient if and only if it is weakly omniscient and Markov. The case  A  =  om says that LPO  <-> WLPO  /\ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e. Omni  <->  ( A  e. WOmni  /\  A  e. Markov ) )
 
9-Jun-2024iswomnimap 7301 The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1o ) )
 
9-Jun-2024iswomni 7300 The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
 
9-Jun-2024df-womni 7299 A weakly omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular,  om  e. WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x )  =  1o ) }
 
1-Jun-2024ringcmnd 13964 A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e. CMnd )
 
1-Jun-2024ringabld 13963 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e.  Abel )
 
1-Jun-2024cmnmndd 13811 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  G  e.  Mnd )
 
1-Jun-2024ablcmnd 13795 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e. CMnd )
 
1-Jun-2024grpmndd 13512 A group is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  G  e.  Mnd )
 
1-Jun-2024fndmi 5397 The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.)
 |-  F  Fn  A   =>    |-  dom  F  =  A
 
29-May-2024pw1nct 16280 A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
 |-  ( A. r ( r  C_  ( ~P 1o  X.  om )  ->  ( A. p  e.  ~P  1o E. n  e.  om  p r n 
 ->  E. m  e.  om  A. q  e.  ~P  1o q r m ) )  ->  -.  E. f  f : om -onto-> ( ~P 1o 1o ) )
 
28-May-2024sssneq 16279 Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
 |-  ( A  C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
 
26-May-2024elpwi2 4221 Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
 |-  B  e.  V   &    |-  A  C_  B   =>    |-  A  e.  ~P B
 
25-May-2024mplnegfi 14634 The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  N  =  ( invg `  R )   &    |-  M  =  ( invg `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( M `  X )  =  ( N  o.  X ) )
 
24-May-2024dvmptcjx 15363 Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
 |-  ( ( ph  /\  x  e.  X )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  V )   &    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X  C_  RR )   =>    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  ( * `  A ) ) )  =  ( x  e.  X  |->  ( * `  B ) ) )
 
23-May-2024cbvralfw 2734 Rule used to change bound variables, using implicit substitution. Version of cbvralf 2736 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
23-May-2024cbvrmow 2694 Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 2744 with a disjoint variable condition. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 23-May-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
23-May-2024cbvmow 2098 Rule used to change bound variables, using implicit substitution. Version of cbvmo 2097 with a disjoint variable condition. (Contributed by NM, 9-Mar-1995.) (Revised by GG, 23-May-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x ph  <->  E* y ps )
 
22-May-2024efltlemlt 15413 Lemma for eflt 15414. The converse of efltim 12175 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( exp `  A )  <  ( exp `  B ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  ( ( abs `  ( A  -  B ) )  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )   =>    |-  ( ph  ->  A  <  B )
 
21-May-2024eflt 15414 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( exp `  A )  <  ( exp `  B ) ) )
 
20-May-2024nsyl5 653 A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.)
 |-  ( ph  ->  ps )   &    |-  ( -.  ph  ->  ch )   =>    |-  ( -.  ps  ->  ch )
 
19-May-2024apdifflemr 16326 Lemma for apdiff 16327. (Contributed by Jim Kingdon, 19-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  S  e.  QQ )   &    |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )   &    |-  ( ( ph  /\  S  =/=  0 ) 
 ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )   =>    |-  ( ph  ->  A #  S )
 
18-May-2024apdifflemf 16325 Lemma for apdiff 16327. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  Q  e.  QQ )   &    |-  ( ph  ->  R  e.  QQ )   &    |-  ( ph  ->  Q  <  R )   &    |-  ( ph  ->  (
 ( Q  +  R )  /  2 ) #  A )   =>    |-  ( ph  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
 
17-May-2024apdiff 16327 The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
 |-  ( A  e.  RR  ->  (
 A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
 q  =/=  r  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) ) ) )
 
16-May-2024lmodgrpd 14226 A left module is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  W  e.  LMod )   =>    |-  ( ph  ->  W  e.  Grp )
 
16-May-2024crnggrpd 13939 A commutative ring is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  R  e.  Grp )
 
16-May-2024crngringd 13938 A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  R  e.  Ring )
 
16-May-2024ringgrpd 13934 A ring is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e.  Grp )
 
15-May-2024reeff1oleme 15411 Lemma for reeff1o 15412. (Contributed by Jim Kingdon, 15-May-2024.)
 |-  ( U  e.  (
 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x )  =  U )
 
14-May-2024df-relog 15497 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
 |- 
 log  =  `' ( exp  |`  RR )
 
14-May-2024fvmpopr2d 6112 Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.)
 |-  ( ph  ->  F  =  ( a  e.  A ,  b  e.  B  |->  C ) )   &    |-  ( ph  ->  P  =  <. a ,  b >. )   &    |-  (
 ( ph  /\  a  e.  A  /\  b  e.  B )  ->  C  e.  V )   =>    |-  ( ( ph  /\  a  e.  A  /\  b  e.  B )  ->  ( F `  P )  =  C )
 
12-May-2024dvdstrd 12307 The divides relation is transitive, a deduction version of dvdstr 12305. (Contributed by metakunt, 12-May-2024.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  M 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  N )
 
7-May-2024ioocosf1o 15493 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
 |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,)
 pi ) -1-1-onto-> ( -u 1 (,) 1
 )
 
7-May-2024cos0pilt1 15491 Cosine is between minus one and one on the open interval between zero and  pi. (Contributed by Jim Kingdon, 7-May-2024.)
 |-  ( A  e.  (
 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1
 ) )
 
6-May-2024cos11 15492 Cosine is one-to-one over the closed interval from  0 to  pi. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
 |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  (
 0 [,] pi ) ) 
 ->  ( A  =  B  <->  ( cos `  A )  =  ( cos `  B ) ) )
 
5-May-2024omiunct 12981 The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12977 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ( ph  /\  x  e.  om )  ->  E. g  g : om -onto-> ( B 1o )
 )   =>    |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  om  B 1o )
 )
 
5-May-2024ctiunctal 12978 Variation of ctiunct 12977 which allows  x to be present in  ph. (Contributed by Jim Kingdon, 5-May-2024.)
 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  ( ph  ->  A. x  e.  A  G : om -onto->
 ( B 1o ) )   =>    |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
 
3-May-2024cc4n 7425 Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7424, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ch ) )
 
3-May-2024cc4f 7423 Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  F/_ n A   &    |-  ( ph  ->  N  ~~ 
 om )   &    |-  ( x  =  ( f `  n )  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
1-May-2024cc4 7424 Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
29-Apr-2024cc3 7422 Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  F  e.  _V )   &    |-  ( ph  ->  A. n  e.  N  E. w  w  e.  F )   &    |-  ( ph  ->  N  ~~ 
 om )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  F )
 )
 
27-Apr-2024cc2 7421 Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
27-Apr-2024cc2lem 7420 Lemma for cc2 7421. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   &    |-  A  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )   &    |-  G  =  ( n  e.  om  |->  ( 2nd `  (
 f `  ( A `  n ) ) ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
27-Apr-2024cc1 7419 Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  (CCHOICE 
 ->  A. x ( ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
 )  ->  E. f A. z  e.  x  ( f `  z
 )  e.  z ) )
 
24-Apr-2024lsppropd 14361 If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  B  C_  W )   &    |-  ( ( ph  /\  ( x  e.  W  /\  y  e.  W ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  K ) ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  L ) ) )   &    |-  ( ph  ->  K  e.  X )   &    |-  ( ph  ->  L  e.  Y )   =>    |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L )
 )
 
19-Apr-2024omctfn 12980 Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ( ph  /\  x  e.  om )  ->  E. g  g : om -onto-> ( B 1o )
 )   =>    |-  ( ph  ->  E. f
 ( f  Fn  om  /\ 
 A. x  e.  om  ( f `  x ) : om -onto-> ( B 1o ) ) )
 
13-Apr-2024prodmodclem2 12054 Lemma for prodmodc 12055. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  (
 ( A  C_  ( ZZ>=
 `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) 
 /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
11-Apr-2024prodmodclem2a 12053 Lemma for prodmodc 12055. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  (  seq 1
 (  x.  ,  G ) `  N ) )
 
11-Apr-2024prodmodclem3 12052 Lemma for prodmodc 12055. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
10-Apr-2024jcnd 656 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  -.  ( ps  ->  ch ) )
 
4-Apr-2024prodrbdclem 12048 Lemma for prodrbdc 12051. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
24-Mar-2024prodfdivap 12024 The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `
  N )  /  (  seq M (  x. 
 ,  G ) `  N ) ) )
 
24-Mar-2024prodfrecap 12023 The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  =  ( 1 
 /  ( F `  k ) ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   =>    |-  ( ph  ->  (  seq M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq M (  x.  ,  F ) `
  N ) ) )
 
23-Mar-2024prodfap0 12022 The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `  N ) #  0 )
 
22-Mar-2024prod3fmul 12018 The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  x.  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq M (  x.  ,  G ) `
  N ) ) )
 
21-Mar-2024df-proddc 12028 Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sumdc 11831 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
 |- 
 prod_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( ( A 
 C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m ) ) ) )
 
19-Mar-2024cos02pilt1 15490 Cosine is less than one between zero and  2  x.  pi. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  (
 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
19-Mar-2024cosq34lt1 15489 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
14-Mar-2024coseq0q4123 15473 Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
14-Mar-2024cosq23lt0 15472 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( cos `  A )  <  0 )
 
9-Mar-2024pilem3 15422 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
9-Mar-2024exmidonfin 7340 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 7002 and nnon 4679. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  ( om  =  ( On  i^i  Fin )  -> EXMID )
 
9-Mar-2024exmidonfinlem 7339 Lemma for exmidonfin 7340. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
 
8-Mar-2024sin0pilem2 15421 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
8-Mar-2024sin0pilem1 15420 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
7-Mar-2024cosz12 15419 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
6-Mar-2024cos12dec 12245 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
 |-  ( ( A  e.  ( 1 [,] 2
 )  /\  B  e.  ( 1 [,] 2
 )  /\  A  <  B )  ->  ( cos `  B )  <  ( cos `  A ) )
 
2-Mar-2024scaffvalg 14235 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( W  e.  V  -> 
 .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
 
2-Mar-2024dvrfvald 14062 Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  .x.  =  ( .r `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  I  =  ( invr `  R ) )   &    |-  ( ph  ->  ./  =  (/r `  R ) )   &    |-  ( ph  ->  R  e. SRing )   =>    |-  ( ph  ->  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
 .x.  ( I `  y ) ) ) )
 
2-Mar-2024plusffvalg 13361 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  V  -> 
 .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y ) ) )
 
25-Feb-2024insubm 13484 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
 |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M ) )  ->  ( A  i^i  B )  e.  (SubMnd `  M )
 )
 
25-Feb-2024mul2lt0pn 9928 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  0
 )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( B  x.  A )  < 
 0 )
 
25-Feb-2024mul2lt0np 9927 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  0
 )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( A  x.  B )  < 
 0 )
 
25-Feb-2024lt0ap0 8763 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ( A  e.  RR  /\  A  <  0
 )  ->  A #  0
 )
 
25-Feb-2024negap0d 8746 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  -u A #  0 )
 
24-Feb-2024lt0ap0d 8764 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A #  0 )
 
20-Feb-2024ivthdec 15283 The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `  A ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  y )  <  ( F `  x ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
20-Feb-2024ivthinclemex 15281 Lemma for ivthinc 15282. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
 
19-Feb-2024ivthinclemuopn 15277 Lemma for ivthinc 15282. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   &    |-  ( ph  ->  S  e.  R )   =>    |-  ( ph  ->  E. q  e.  R  q  <  S )
 
19-Feb-2024dedekindicc 15272 A Dedekind cut identifies a unique real number. Similar to df-inp 7621 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A (,) B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
 
19-Feb-2024grpsubfvalg 13544 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
 .+  ( I `  y ) ) ) )
 
18-Feb-2024ivthinclemloc 15280 Lemma for ivthinc 15282. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  (
 q  e.  L  \/  r  e.  R )
 ) )
 
18-Feb-2024ivthinclemdisj 15279 Lemma for ivthinc 15282. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  ( L  i^i  R )  =  (/) )
 
18-Feb-2024ivthinclemur 15278 Lemma for ivthinc 15282. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
 
18-Feb-2024ivthinclemlr 15276 Lemma for ivthinc 15282. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
 
18-Feb-2024ivthinclemum 15274 Lemma for ivthinc 15282. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
 
18-Feb-2024ivthinclemlm 15273 Lemma for ivthinc 15282. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   =>    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
 
17-Feb-20240subm 13483 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G ) )
 
17-Feb-2024mndissubm 13474 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  S  e.  (SubMnd `  G )
 ) )
 
17-Feb-2024mgmsscl 13360 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S 
 C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 /\  ( X  e.  S  /\  Y  e.  S ) )  ->  ( X ( +g  `  G ) Y )  e.  S )
 
15-Feb-2024dedekindicclemeu 15270 Lemma for dedekindicc 15272. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  C  e.  ( A [,] B ) )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )   &    |-  ( ph  ->  D  e.  ( A [,] B ) )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r
 ) )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  -> F.  )
 
15-Feb-2024dedekindicclemlu 15269 Lemma for dedekindicc 15272. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
15-Feb-2024dedekindicclemlub 15268 Lemma for dedekindicc 15272. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e.  ( A [,] B ) ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
15-Feb-2024dedekindicclemloc 15267 Lemma for dedekindicc 15272. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
15-Feb-2024dedekindicclemub 15266 Lemma for dedekindicc 15272. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
 
15-Feb-2024dedekindicclemuub 15265 Lemma for dedekindicc 15272. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  C )
 
14-Feb-2024suplociccex 15264 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8187 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  ( B [,] C ) ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
14-Feb-2024suplociccreex 15263 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8187 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
10-Feb-2024cbvexdvaw 1958 Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 1956 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
10-Feb-2024cbvaldvaw 1957 Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 1955 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
6-Feb-2024ivthinclemlopn 15275 Lemma for ivthinc 15282. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   &    |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }   &    |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `
  w ) }   &    |-  ( ph  ->  Q  e.  L )   =>    |-  ( ph  ->  E. r  e.  L  Q  <  r
 )
 
5-Feb-2024ivthinc 15282 The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  x )  <  ( F `  y ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
2-Feb-2024dedekindeulemuub 15256 Lemma for dedekindeu 15262. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  A )
 
31-Jan-2024dedekindeulemeu 15261 Lemma for dedekindeu 15262. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  -> F.  )
 
31-Jan-2024dedekindeulemlu 15260 Lemma for dedekindeu 15262. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
31-Jan-2024dedekindeulemlub 15259 Lemma for dedekindeu 15262. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
31-Jan-2024dedekindeulemloc 15258 Lemma for dedekindeu 15262. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e. 
 RR  A. y  e.  RR  ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
31-Jan-2024dedekindeulemub 15257 Lemma for dedekindeu 15262. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
 
30-Jan-2024axsuploc 8187 An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 8088 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) ) ) 
 ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
30-Jan-2024iotam 5286 Representation of "the unique element such that  ph " with a class expression  A which is inhabited (that means that "the unique element such that  ph " exists). (Contributed by AV, 30-Jan-2024.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota
 x ph ) )  ->  ps )
 
29-Jan-2024sgrpidmndm 13419 A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. Smgrp  /\ 
 E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
 
26-Jan-2024elovmporab1w 6177 Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG, 26-Jan-2024.)
 |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  [_ x  /  m ]_ M  |  ph } )   &    |-  (
 ( X  e.  _V  /\  Y  e.  _V )  -> 
 [_ X  /  m ]_ M  e.  _V )   =>    |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  [_ X  /  m ]_ M ) )
 
26-Jan-2024opabidw 4324 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 4323 with a disjoint variable condition. (Contributed by NM, 14-Apr-1995.) (Revised by GG, 26-Jan-2024.)
 |-  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  <->  ph )
 
26-Jan-2024invdisjrab 4056 The restricted class abstractions 
{ x  e.  B  |  C  =  y } for distinct  y  e.  A are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.)
 |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
 
24-Jan-2024axpre-suploclemres 8056 Lemma for axpre-suploc 8057. The result. The proof just needs to define  B as basically the same set as  A (but expressed as a subset of  R. rather than a subset of  RR), and apply suplocsr 7964. (Contributed by Jim Kingdon, 24-Jan-2024.)
 |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y 
 <RR  x )   &    |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )   &    |-  B  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
 y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
23-Jan-2024ax-pre-suploc 8088 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

Although this and ax-caucvg 8087 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8087.

(Contributed by Jim Kingdon, 23-Jan-2024.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
23-Jan-2024axpre-suploc 8057 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8088. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
22-Jan-2024suplocsr 7964 An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
21-Jan-2024bj-el2oss1o 16048 Shorter proof of el2oss1o 6559 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  2o  ->  A 
 C_  1o )
 
21-Jan-2024ltm1sr 7932 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
20-Jan-2024mndinvmod 13444 Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
 
20-Jan-2024ccats1val1g 11136 Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by JJ, 20-Jan-2024.)
 |-  ( ( W  e. Word  V 
 /\  S  e.  Y  /\  I  e.  (
 0..^ ( `  W )
 ) )  ->  (
 ( W ++  <" S "> ) `  I
 )  =  ( W `
  I ) )
 
19-Jan-2024suplocsrlempr 7962 Lemma for suplocsr 7964. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w 
 /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
 
18-Jan-2024ccatval1 11098 Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( `  S )
 ) )  ->  (
 ( S ++  T ) `
  I )  =  ( S `  I
 ) )
 
18-Jan-2024ccat0 11097 The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( ( S ++ 
 T )  =  (/)  <->  ( S  =  (/)  /\  T  =  (/) ) ) )
 
18-Jan-2024suplocsrlemb 7961 Lemma for suplocsr 7964. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  A. u  e. 
 P.  A. v  e.  P.  ( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
 
16-Jan-2024suplocsrlem 7963 Lemma for suplocsr 7964. The set  A has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
15-Jan-2024eqg0el 13732 Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
 |- 
 .~  =  ( G ~QG  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G ) )  ->  ( [ X ]  .~  =  H  <->  X  e.  H ) )
 
14-Jan-2024suplocexprlemlub 7879 Lemma for suplocexpr 7880. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
 
14-Jan-2024suplocexprlemub 7878 Lemma for suplocexpr 7880. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
 
10-Jan-2024nfcsbw 3141 Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3142 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x [_ A  /  y ]_ B
 
10-Jan-2024nfsbcw 3139 Bound-variable hypothesis builder for class substitution. Version of nfsbc 3029 with a disjoint variable condition, which in the future may make it possible to reduce axiom usage. (Contributed by NM, 7-Sep-2014.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x [. A  /  y ]. ph
 
10-Jan-2024nfsbcdw 3138 Version of nfsbcd 3028 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x [. A  /  y ]. ps )
 
10-Jan-2024cbvcsbw 3108 Version of cbvcsb 3109 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
 |-  F/_ y C   &    |-  F/_ x D   &    |-  ( x  =  y  ->  C  =  D )   =>    |-  [_ A  /  x ]_ C  =  [_ A  /  y ]_ D
 
10-Jan-2024cbvsbcw 3036 Version of cbvsbc 3037 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
10-Jan-2024cbvrex2vw 2757 Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2759 with a disjoint variable condition, which does not require ax-13 2182. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
10-Jan-2024cbvral2vw 2756 Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2758 with a disjoint variable condition, which does not require ax-13 2182. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
10-Jan-2024cbvrexw 2739 Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2735 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
10-Jan-2024cbvralw 2738 Rule used to change bound variables, using implicit substitution. Version of cbvral 2741 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
10-Jan-2024cbvrexfw 2735 Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2737 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
10-Jan-2024nfralw 2547 Bound-variable hypothesis builder for restricted quantification. See nfralya 2550 for a version with  y and 
A distinct instead of  x and  y. (Contributed by NM, 1-Sep-1999.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
10-Jan-2024nfraldw 2542 Not-free for restricted universal quantification where  x and  y are distinct. See nfraldya 2545 for a version with  y and  A distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y  e.  A  ps )
 
10-Jan-2024nfabdw 2371 Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2372 with a disjoint variable condition. (Contributed by Mario Carneiro, 8-Oct-2016.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/_ x { y  |  ps } )
 
10-Jan-2024cbvex2vw 1960 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) (Revised by GG, 10-Jan-2024.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ph  <->  E. z E. w ps )
 
10-Jan-2024cbval2vw 1959 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.) (Revised by GG, 10-Jan-2024.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x A. y ph  <->  A. z A. w ps )
 
10-Jan-2024cbv2w 1776 Rule used to change bound variables, using implicit substitution. Version of cbv2 1775 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
9-Jan-2024suplocexprlemloc 7876 Lemma for suplocexpr 7880. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
 
9-Jan-2024suplocexprlemdisj 7875 Lemma for suplocexpr 7880. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
 
9-Jan-2024suplocexprlemru 7874 Lemma for suplocexpr 7880. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. r  e. 
 Q.  ( r  e.  ( 2nd `  B ) 
 <-> 
 E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
 
9-Jan-2024suplocexprlemrl 7872 Lemma for suplocexpr 7880. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
 
9-Jan-2024suplocexprlem2b 7869 Lemma for suplocexpr 7880. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
9-Jan-2024suplocexprlemell 7868 Lemma for suplocexpr 7880. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
7-Jan-2024suplocexpr 7880 An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y 
 /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
 
7-Jan-2024suplocexprlemex 7877 Lemma for suplocexpr 7880. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  B  e.  P. )
 
7-Jan-2024suplocexprlemmu 7873 Lemma for suplocexpr 7880. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
 
7-Jan-2024suplocexprlemml 7871 Lemma for suplocexpr 7880. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
7-Jan-2024suplocexprlemss 7870 Lemma for suplocexpr 7880. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
5-Jan-2024dedekindicclemicc 15271 Lemma for dedekindicc 15272. Same as dedekindicc 15272, except that we merely show  x to be an element of  ( A [,] B ). Later we will strengthen that to  ( A (,) B
). (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
 
5-Jan-2024dedekindeu 15262 A Dedekind cut identifies a unique real number. Similar to df-inp 7621 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E! x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
1-Jan-2024ccatlen 11096 The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S )  +  ( `  T )
 ) )
 
31-Dec-2023dvmptsubcn 15362 Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  (
 ( ph  /\  x  e. 
 CC )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  D  e.  W )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
 
31-Dec-2023dvmptnegcn 15361 Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  -u A ) )  =  ( x  e.  CC  |->  -u B ) )
 
31-Dec-2023dvmptcmulcn 15360 Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( C  x.  A ) ) )  =  ( x  e. 
 CC  |->  ( C  x.  B ) ) )
 
31-Dec-2023rinvmod 13812 Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6170. (Contributed by AV, 31-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
 
31-Dec-2023brm 4113 If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
30-Dec-2023dvmptccn 15354 Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  A ) )  =  ( x  e. 
 CC  |->  0 ) )
 
30-Dec-2023dvmptidcn 15353 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 )
 
30-Dec-2023eqwrd 11078 Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.)
 |-  ( ( U  e. Word  S 
 /\  W  e. Word  T )  ->  ( U  =  W 
 <->  ( ( `  U )  =  ( `  W )  /\  A. i  e.  ( 0..^ ( `  U ) ) ( U `
  i )  =  ( W `  i
 ) ) ) )
 
29-Dec-2023mndbn0 13430 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13429). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Mnd  ->  B  =/=  (/) )
 
28-Dec-2023mulgnn0gsum 13631 Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN0  /\  X  e.  B ) 
 ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
 
28-Dec-2023mulgnngsum 13630 Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G 
 gsumg  F ) )
 
26-Dec-2023gsumfzreidx 13840 Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with  M  =  1. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   &    |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
26-Dec-2023gsumsplit1r 13397 Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... ( N  +  1
 ) ) --> B )   =>    |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M
 ... N ) ) )  .+  ( F `
  ( N  +  1 ) ) ) )
 
26-Dec-2023lidrididd 13381 If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 13380) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  L  =  .0.  )
 
26-Dec-2023lidrideqd 13380 If there is a left and right identity element for any binary operation (group operation)  .+, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   =>    |-  ( ph  ->  L  =  R )
 
25-Dec-2023ctfoex 7253 A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  A  e.  _V )
 
23-Dec-2023enct 12970 Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |-  ( A  ~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> ( B 1o )
 ) )
 
23-Dec-2023enctlem 12969 Lemma for enct 12970. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |-  ( A  ~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
 
23-Dec-2023omct 7252  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |- 
 E. f  f : om -onto-> ( om 1o )
 
21-Dec-2023dvcoapbr 15346 The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : Y --> X )   &    |-  ( ph  ->  Y  C_  T )   &    |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  T  C_ 
 CC )   &    |-  ( ph  ->  ( G `  C ) ( S  _D  F ) K )   &    |-  ( ph  ->  C ( T  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( T  _D  ( F  o.  G ) ) ( K  x.  L ) )
 
19-Dec-2023apsscn 8762 The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |- 
 { x  e.  A  |  x #  B }  C_ 
 CC
 
19-Dec-2023aprcl 8761 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC )
 )
 
18-Dec-2023limccoap 15317 Composition of two limits. This theorem is only usable in the case where  x #  X implies R(x) #  C so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
 |-  ( ( ph  /\  x  e.  { w  e.  A  |  w #  X }
 )  ->  R  e.  { w  e.  B  |  w #  C } )   &    |-  (
 ( ph  /\  y  e. 
 { w  e.  B  |  w #  C }
 )  ->  S  e.  CC )   &    |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim CC  X ) )   &    |-  ( ph  ->  D  e.  (
 ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
 CC  C ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  D  e.  ( ( x  e. 
 { w  e.  A  |  w #  X }  |->  T ) lim CC  X ) )
 
16-Dec-2023cnreim 11455 Complex apartness in terms of real and imaginary parts. See also apreim 8718 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
14-Dec-2023cnopnap 15250 The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o. 
 -  ) ) )
 
14-Dec-2023cnovex 14835 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K )  e.  _V )
 
13-Dec-2023reopnap 15185 The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
 |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen `  ran  (,) )
 )
 
12-Dec-2023cnopncntop 15183 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  e.  ( MetOpen `  ( abs  o.  -  )
 )
 
12-Dec-2023unicntopcntop 15181 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  =  U. ( MetOpen `  ( abs  o.  -  ) )
 
4-Dec-2023bj-pm2.18st 16024 Clavius law for stable formulas. See pm2.18dc 859. (Contributed by BJ, 4-Dec-2023.)
 |-  (STAB  ph  ->  ( ( -.  ph  ->  ph )  ->  ph ) )
 
4-Dec-2023bj-nnclavius 16011 Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.)
 |-  (
 ( -.  ph  ->  ph )  ->  -.  -.  ph )
 
2-Dec-2023dvmulxx 15343 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15341. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( (
 ( ( S  _D  F ) `  C )  x.  ( G `  C ) )  +  ( ( ( S  _D  G ) `  C )  x.  ( F `  C ) ) ) )
 
1-Dec-2023dvmulxxbr 15341 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 15343. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `
  C ) )  +  ( L  x.  ( F `  C ) ) ) )
 
29-Nov-2023subctctexmid 16277 If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( ph  ->  A. x ( E. s ( s  C_  om 
 /\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )   &    |-  ( ph  ->  om  e. Markov )   =>    |-  ( ph  -> EXMID )
 
29-Nov-2023ismkvnex 7290 The predicate of being Markov stated in terms of double negation and comparison with  1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )
 ) )
 
28-Nov-2023ccfunen 7418 Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A 
 ~~  om )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
28-Nov-2023exmid1stab 4271 If every proposition is stable, excluded middle follows. We are thinking of  x as a proposition and  x  =  { (/)
} as " x is true". (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ( ph  /\  x  C_ 
 { (/) } )  -> STAB  x  =  { (/) } )   =>    |-  ( ph  -> EXMID )
 
27-Nov-2023df-cc 7417 The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7356 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
 |-  (CCHOICE  <->  A. x ( dom  x  ~~ 
 om  ->  E. f ( f 
 C_  x  /\  f  Fn  dom  x ) ) )
 
26-Nov-2023offeq 6202 Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  T )
 )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : B
 --> T )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   &    |-  ( ph  ->  H : C --> U )   &    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  D )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  E )   &    |-  (
 ( ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  H )
 
25-Nov-2023dvaddxx 15342 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15340. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( (
 ( S  _D  F ) `  C )  +  ( ( S  _D  G ) `  C ) ) )
 
25-Nov-2023dvaddxxbr 15340 The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
 
25-Nov-2023dcnn 852 Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 846. The relation between dcn 846 and dcnn 852 is analogous to that between notnot 632 and notnotnot 637 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 852 means that a proposition is testable if and only if its negation is testable, and dcn 846 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
 |-  (DECID 
 -.  ph  <-> DECID  -.  -.  ph )
 
24-Nov-2023bj-dcst 16035 Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  (DECID STAB  ph  <-> STAB  ph )
 
24-Nov-2023bj-nnbidc 16031 If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 16018. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ph  ->  (DECID  ph  <->  ph ) )
 
24-Nov-2023bj-dcstab 16030 A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
 |-  (DECID  ph  -> STAB  ph )
 
24-Nov-2023bj-fadc 16028 A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  ph  -> DECID  ph )
 
24-Nov-2023bj-trdc 16026 A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( ph  -> DECID  ph )
 
24-Nov-2023bj-stal 16023 The universal quantification of a stable formula is stable. See bj-stim 16020 for implication, stabnot 837 for negation, and bj-stan 16021 for conjunction. (Contributed by BJ, 24-Nov-2023.)
 |-  ( A. xSTAB 
 ph  -> STAB  A. x ph )
 
24-Nov-2023bj-stand 16022 The conjunction of two stable formulas is stable. Deduction form of bj-stan 16021. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 16021 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
 |-  ( ph  -> STAB  ps )   &    |-  ( ph  -> STAB  ch )   =>    |-  ( ph  -> STAB 
 ( ps  /\  ch ) )
 
24-Nov-2023bj-stan 16021 The conjunction of two stable formulas is stable. See bj-stim 16020 for implication, stabnot 837 for negation, and bj-stal 16023 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
 |-  (
 (STAB  ph  /\ STAB 
 ps )  -> STAB  ( ph  /\  ps ) )
 
24-Nov-2023bj-stim 16020 A conjunction with a stable consequent is stable. See stabnot 837 for negation , bj-stan 16021 for conjunction , and bj-stal 16023 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
 |-  (STAB  ps  -> STAB  (
 ph  ->  ps ) )
 
24-Nov-2023bj-nnbist 16018 If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if  ph is a classical tautology, then  -.  -.  ph is an intuitionistic tautology. Therefore, if  ph is a classical tautology, then  ph is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 16031). (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ph  ->  (STAB  ph  <->  ph ) )
 
24-Nov-2023bj-fast 16015 A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  ph  -> STAB  ph )
 
24-Nov-2023bj-trst 16013 A provable formula is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( ph  -> STAB  ph )
 
24-Nov-2023bj-nnan 16010 The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ( ph  /\  ps )  ->  ( -.  -.  ph 
 /\  -.  -.  ps )
 )
 
24-Nov-2023bj-nnim 16009 The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ( ph  ->  ps )  ->  ( ph  ->  -.  -.  ps )
 )
 
24-Nov-2023bj-nnsn 16007 As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.)
 |-  (
 ( ph  ->  -.  ps ) 
 <->  ( -.  -.  ph  ->  -.  ps ) )
 
24-Nov-2023nnal 1675 The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  A. x ph  ->  A. x  -.  -.  ph )
 
22-Nov-2023ofvalg 6198 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  C )   &    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( G `  X )  =  D )   &    |-  (
 ( ph  /\  X  e.  S )  ->  ( C R D )  e.  U )   =>    |-  ( ( ph  /\  X  e.  S )  ->  (
 ( F  oF R G ) `  X )  =  ( C R D ) )
 
21-Nov-2023exmidac 7359 The axiom of choice implies excluded middle. See acexmid 5973 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  (CHOICE 
 -> EXMID )
 
21-Nov-2023exmidaclem 7358 Lemma for exmidac 7359. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }   &    |-  B  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  y  =  { (/) } ) }   &    |-  C  =  { A ,  B }   =>    |-  (CHOICE 
 -> EXMID )
 
21-Nov-2023exmid1dc 4263 A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4256 or ordtriexmid 4590. In this context  x  =  { (/) } can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  ( ( ph  /\  x  C_ 
 { (/) } )  -> DECID  x  =  { (/) } )   =>    |-  ( ph  -> EXMID )
 
20-Nov-2023acfun 7357 A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
 |-  ( ph  -> CHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
18-Nov-2023rnrhmsubrg 14181 The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
 |-  ( F  e.  ( M RingHom  N )  ->  ran  F  e.  (SubRing `  N )
 )
 
18-Nov-2023condc 857 Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky". This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.)

 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
18-Nov-2023stdcn 851 A formula is stable if and only if the decidability of its negation implies its decidability. Note that the right-hand side of this biconditional is the converse of dcn 846. (Contributed by BJ, 18-Nov-2023.)
 |-  (STAB 
 ph 
 <->  (DECID 
 -.  ph  -> DECID  ph ) )
 
17-Nov-2023cnplimclemr 15308 Lemma for cnplimccntop 15309. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   =>    |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
17-Nov-2023cnplimclemle 15307 Lemma for cnplimccntop 15309. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  Z  e.  A )   &    |-  (
 ( ph  /\  Z #  B  /\  ( abs `  ( Z  -  B ) )  <  D )  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )   &    |-  ( ph  ->  ( abs `  ( Z  -  B ) )  <  D )   =>    |-  ( ph  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  E )
 
14-Nov-2023limccnp2cntop 15316 The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   =>    |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
 
10-Nov-2023rpmaxcl 11700 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
9-Nov-2023limccnp2lem 15315 Lemma for limccnp2cntop 15316. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   &    |-  F/ x ph   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  L  e.  RR+ )   &    |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  (
 ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs 
 o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L )  ->  ( ( C H D ) ( abs  o.  -  )
 ( r H s ) )  <  E ) )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C ) )  <  L ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D ) )  <  L ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
 
4-Nov-2023ellimc3apf 15299 Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  F/_ z F   =>    |-  ( ph  ->  ( C  e.  ( F lim
 CC  B )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
 y )  ->  ( abs `  ( ( F `
  z )  -  C ) )  < 
 x ) ) ) )
 
3-Nov-2023limcmpted 15302 Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
 |-  ( ph  ->  A  C_ 
 CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  (
 ( ph  /\  z  e.  A )  ->  D  e.  CC )   =>    |-  ( ph  ->  ( C  e.  ( (
 z  e.  A  |->  D ) lim CC  B )  <-> 
 ( C  e.  CC  /\ 
 A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y ) 
 ->  ( abs `  ( D  -  C ) )  <  x ) ) ) )
 
1-Nov-2023unct 12979 The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
 |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
 
31-Oct-2023ctiunct 12977 A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each  B ( x ): it refers to  B ( x ) together with the  G ( x ) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be  ( ph  /\  x  e.  A )  ->  E. g g : om -onto-> ( B 1o ). This is almost omiunct 12981 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12979, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12932) and using the first number to map to an element  x of  A and the second number to map to an element of B(x) . In this way we are able to map to every element of  U_ x  e.  A B. Although it would be possible to work directly with countability expressed as  F : om -onto-> ( A 1o ), we instead use functions from subsets of the natural numbers via ctssdccl 7246 and ctssdc 7248.

(Contributed by Jim Kingdon, 31-Oct-2023.)

 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  ( ( ph  /\  x  e.  A )  ->  G : om -onto-> ( B 1o )
 )   =>    |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
 
30-Oct-2023ctssdccl 7246 A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7248 but expressed in terms of classes rather than  E.. (Contributed by Jim Kingdon, 30-Oct-2023.)
 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  S  =  { x  e.  om  |  ( F `
  x )  e.  (inl " A ) }   &    |-  G  =  ( `'inl  o.  F )   =>    |-  ( ph  ->  ( S  C_  om  /\  G : S -onto-> A  /\  A. n  e.  om DECID  n  e.  S ) )
 
28-Oct-2023ctiunctlemfo 12976 Lemma for ctiunct 12977. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  H  =  ( n  e.  U  |->  ( [_ ( F `  ( 1st `  ( J `  n ) ) ) 
 /  x ]_ G `  ( 2nd `  ( J `  n ) ) ) )   &    |-  F/_ x H   &    |-  F/_ x U   =>    |-  ( ph  ->  H : U -onto-> U_ x  e.  A  B )
 
28-Oct-2023ctiunctlemf 12975 Lemma for ctiunct 12977. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  H  =  ( n  e.  U  |->  ( [_ ( F `  ( 1st `  ( J `  n ) ) ) 
 /  x ]_ G `  ( 2nd `  ( J `  n ) ) ) )   =>    |-  ( ph  ->  H : U --> U_ x  e.  A  B )
 
28-Oct-2023ctiunctlemudc 12974 Lemma for ctiunct 12977. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   =>    |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
 
28-Oct-2023ctiunctlemuom 12973 Lemma for ctiunct 12977. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   =>    |-  ( ph  ->  U  C_  om )
 
28-Oct-2023ctiunctlemu2nd 12972 Lemma for ctiunct 12977. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  ( ph  ->  N  e.  U )   =>    |-  ( ph  ->  ( 2nd `  ( J `  N ) )  e.  [_ ( F `  ( 1st `  ( J `  N ) ) ) 
 /  x ]_ T )
 
28-Oct-2023ctiunctlemu1st 12971 Lemma for ctiunct 12977. (Contributed by Jim Kingdon, 28-Oct-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ( ph  /\  x  e.  A )  ->  T  C_ 
 om )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  A. n  e.  om DECID  n  e.  T )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  G : T -onto-> B )   &    |-  ( ph  ->  J : om
 -1-1-onto-> ( om  X.  om )
 )   &    |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z ) )  e.  S  /\  ( 2nd `  ( J `  z
 ) )  e.  [_ ( F `  ( 1st `  ( J `  z
 ) ) )  /  x ]_ T ) }   &    |-  ( ph  ->  N  e.  U )   =>    |-  ( ph  ->  ( 1st `  ( J `  N ) )  e.  S )
 
28-Oct-2023pm2.521gdc 872 A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( ch  ->  ph ) ) )
 
28-Oct-2023stdcndc 849 A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.)
 |-  ( (STAB 
 ph  /\ DECID  -.  ph )  <-> DECID  ph )
 
28-Oct-2023conax1k 658 Weakening of conax1 657. General instance of pm2.51 659 and of pm2.52 660. (Contributed by BJ, 28-Oct-2023.)
 |-  ( -.  ( ph  ->  ps )  ->  ( ch  ->  -.  ps )
 )
 
28-Oct-2023conax1 657 Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.)
 |-  ( -.  ( ph  ->  ps )  ->  -.  ps )
 
25-Oct-2023divcnap 15204 Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  { x  e.  CC  |  x #  0 } )   =>    |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  /  z ) )  e.  ( ( J  tX  K )  Cn  J )
 
23-Oct-2023cnm 7987 A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
23-Oct-2023oprssdmm 6287 Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
 |-  ( ( ph  /\  u  e.  S )  ->  E. v  v  e.  u )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ph  ->  Rel  F )   =>    |-  ( ph  ->  ( S  X.  S )  C_  dom  F )
 
22-Oct-2023addcncntoplem 15200 Lemma for addcncntop 15201, subcncntop 15202, and mulcncntop 15203. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |- 
 .+  : ( CC 
 X.  CC ) --> CC   &    |-  (
 ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  b ) )  < 
 y  /\  ( abs `  ( v  -  c
 ) )  <  z
 )  ->  ( abs `  ( ( u  .+  v )  -  (
 b  .+  c )
 ) )  <  a
 ) )   =>    |- 
 .+  e.  ( ( J  tX  J )  Cn  J )
 
22-Oct-2023txmetcnp 15157 Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 /\  ( A  e.  X  /\  B  e.  Y ) )  ->  ( F  e.  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) ) )
 
22-Oct-2023xmetxpbl 15147 The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  C  e.  ( X  X.  Y ) )   =>    |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  (
 ( 2nd `  C )
 ( ball `  N ) R ) ) )
 
21-Oct-2023pr2cv2 7337 If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
 |-  ( { A ,  B }  ~~  2o  ->  B  e.  _V )
 
21-Oct-2023pr2cv1 7336 If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
 |-  ( { A ,  B }  ~~  2o  ->  A  e.  _V )
 
15-Oct-2023xmettxlem 15148 Lemma for xmettx 15149. (Contributed by Jim Kingdon, 15-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  C_  ( J  tX  K ) )
 
11-Oct-2023xmettx 15149 The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  =  ( J  tX  K )
 )
 
11-Oct-2023xmetxp 15146 The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   =>    |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
 
8-Oct-2023pr2cv 7338 If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
 |-  ( { A ,  B }  ~~  2o  ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
7-Oct-2023df-iress 13006 Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)

 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base ` 
 ndx ) ,  ( x  i^i  ( Base `  w ) ) >. ) )
 
29-Sep-2023syl2anc2 412 Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
27-Sep-2023fnpr2ob 13339 Biconditional version of fnpr2o 13338. (Contributed by Jim Kingdon, 27-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  { <. (/) ,  A >. , 
 <. 1o ,  B >. }  Fn  2o )
 
25-Sep-2023xpsval 13351 Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |-  T  =  ( R  X.s  S )   &    |-  X  =  (
 Base `  R )   &    |-  Y  =  ( Base `  S )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  S  e.  W )   &    |-  F  =  ( x  e.  X ,  y  e.  Y  |->  { <. (/) ,  x >. ,  <. 1o ,  y >. } )   &    |-  G  =  (Scalar `  R )   &    |-  U  =  ( G X_s { <. (/) ,  R >. , 
 <. 1o ,  S >. } )   =>    |-  ( ph  ->  T  =  ( `' F  "s  U ) )
 
25-Sep-2023fvpr1o 13341 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( B  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
 
25-Sep-2023fvpr0o 13340 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( A  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
 
25-Sep-2023fnpr2o 13338 Function with a domain of  2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. ,  <. 1o ,  B >. }  Fn  2o )
 
25-Sep-2023df-xps 13303 Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |- 
 X.s 
 =  ( r  e. 
 _V ,  s  e. 
 _V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s )  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )  "s  ( (Scalar `  r
 ) X_s { <. (/) ,  r >. , 
 <. 1o ,  s >. } ) ) )
 
12-Sep-2023pwntru 4262 A slight strengthening of pwtrufal 16274. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
 |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
 
11-Sep-2023pwtrufal 16274 A subset of the singleton  { (/) } cannot be anything other than  (/) or  { (/) }. Removing the double negation would change the meaning, as seen at exmid01 4261. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4259), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
 |-  ( A  C_  { (/) }  ->  -. 
 -.  ( A  =  (/) 
 \/  A  =  { (/)
 } ) )
 
9-Sep-2023mathbox 16006 (This theorem is a dummy placeholder for these guidelines. The label of this theorem, "mathbox", is hard-coded into the Metamath program to identify the start of the mathbox section for web page generation.)

A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm.

For contributors:

By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm.

Guidelines:

Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details.

(Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.)

 |-  ph   =>    |-  ph
 
6-Sep-2023djuexb 7179 The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A B )  e.  _V )
 
3-Sep-2023pwf1oexmid 16276 An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
 
3-Sep-2023pwle2 16275 An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  N  C_ 
 2o )
 
30-Aug-2023isomninn 16310 Omniscience stated in terms of natural numbers. Similar to isomnimap 7272 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 30-Aug-2023.)
 |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
 ) )
 
30-Aug-2023isomninnlem 16309 Lemma for isomninn 16310. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
 ) )
 
28-Aug-2023trilpolemisumle 16317 Lemma for trilpo 16322. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  sum_ i  e.  Z  ( ( 1 
 /  ( 2 ^
 i ) )  x.  ( F `  i
 ) )  <_  sum_ i  e.  Z  ( 1  /  ( 2 ^ i
 ) ) )
 
25-Aug-2023cvgcmp2n 16312 A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  NN )  ->  0  <_  ( G `  k ) )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  <_  ( 1  /  (
 2 ^ k ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  G )  e.  dom  ~~>  )
 
25-Aug-2023cvgcmp2nlemabs 16311 Lemma for cvgcmp2n 16312. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting  (  seq 1
(  +  ,  G
) `  N ) as the sum of  (  seq 1
(  +  ,  G
) `  M ) and a term which gets smaller as  M gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  NN )  ->  0  <_  ( G `  k ) )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  <_  ( 1  /  (
 2 ^ k ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M ) ) )  < 
 ( 2  /  M ) )
 
24-Aug-2023trilpolemclim 16315 Lemma for trilpo 16322. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  G  =  ( n  e.  NN  |->  ( ( 1  /  (
 2 ^ n ) )  x.  ( F `
  n ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  G )  e.  dom  ~~>  )
 
23-Aug-2023trilpo 16322 Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 16320 (which means the sequence contains a zero), trilpolemeq1 16319 (which means the sequence is all ones), and trilpolemgt1 16318 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 16308) or that the real numbers are a discrete field (see trirec0 16323).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10427 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  om  e. Omni )
 
23-Aug-2023trilpolemres 16321 Lemma for trilpo 16322. The result. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  ( A  <  1  \/  A  =  1  \/  1  <  A ) )   =>    |-  ( ph  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
 
23-Aug-2023trilpolemlt1 16320 Lemma for trilpo 16322. The  A  <  1 case. We can use the distance between  A and one (that is,  1  -  A) to find a position in the sequence  n where terms after that point will not add up to as much as  1  -  A. By finomni 7275 we know the terms up to  n either contain a zero or are all one. But if they are all one that contradicts the way we constructed  n, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  A  <  1
 )   =>    |-  ( ph  ->  E. x  e.  NN  ( F `  x )  =  0
 )
 
23-Aug-2023trilpolemeq1 16319 Lemma for trilpo 16322. The  A  =  1 case. This is proved by noting that if any  ( F `  x
) is zero, then the infinite sum  A is less than one based on the term which is zero. We are using the fact that the  F sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  A  =  1 )   =>    |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1
 )
 
23-Aug-2023trilpolemgt1 16318 Lemma for trilpo 16322. The  1  <  A case. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  -.  1  <  A )
 
23-Aug-2023trilpolemcl 16316 Lemma for trilpo 16322. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  A  e.  RR )
 
23-Aug-2023triap 16308 Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <-> DECID  A #  B ) )
 
19-Aug-2023djuenun 7362 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D ) )
 
16-Aug-2023ctssdclemr 7247 Lemma for ctssdc 7248. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A  /\  A. n  e.  om DECID  n  e.  s ) )
 
16-Aug-2023ctssdclemn0 7245 Lemma for ctssdc 7248. The  -.  (/)  e.  S case. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ph  ->  -.  (/)  e.  S )   =>    |-  ( ph  ->  E. g  g : om -onto-> ( A 1o ) )
 
15-Aug-2023ctssexmid 7285 The decidability condition in ctssdc 7248 is needed. More specifically, ctssdc 7248 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( ( y  C_  om 
 /\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )   &    |-  om  e. Omni   =>    |-  ( ph  \/  -.  ph )
 
15-Aug-2023ctssdc 7248 A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7285. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( E. s ( s  C_  om  /\  E. f  f : s -onto-> A 
 /\  A. n  e.  om DECID  n  e.  s )  <->  E. f  f : om -onto-> ( A 1o )
 )
 
14-Aug-2023mpoexw 6329 Weak version of mpoex 6330 that holds without ax-coll 4178. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  D  e.  _V   &    |-  A. x  e.  A  A. y  e.  B  C  e.  D   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
13-Aug-2023grpinvfvalg 13541 The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
 .+  x )  =  .0.  ) ) )
 
13-Aug-2023ltntri 8242 Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy,  A  <  B  \/  A  =  B  \/  B  <  A. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )
 
13-Aug-2023mptexw 6228 Weak version of mptex 5838 that holds without ax-coll 4178. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
 |-  A  e.  _V   &    |-  C  e.  _V   &    |-  A. x  e.  A  B  e.  C   =>    |-  ( x  e.  A  |->  B )  e.  _V
 
13-Aug-2023funexw 6227 Weak version of funex 5835 that holds without ax-coll 4178. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
 |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )
 
11-Aug-2023qnnen 12968 The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
 |- 
 QQ  ~~  NN
 
10-Aug-2023ctinfomlemom 12964 Lemma for ctinfom 12965. Converting between  om and  NN0. (Contributed by Jim Kingdon, 10-Aug-2023.)
 |-  N  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  G  =  ( F  o.  `' N )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e. 
 om  E. k  e.  om  -.  ( F `  k
 )  e.  ( F
 " n ) )   =>    |-  ( ph  ->  ( G : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
 NN0  A. i  e.  (
 0 ... m ) ( G `  j )  =/=  ( G `  i ) ) )
 
9-Aug-2023difinfsnlem 7234 Lemma for difinfsn 7235. The case where we need to swap  B and  (inr `  (/) ) in building the mapping  G. (Contributed by Jim Kingdon, 9-Aug-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  F : ( om 1o ) -1-1-> A )   &    |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B )   &    |-  G  =  ( n  e.  om  |->  if (
 ( F `  (inl `  n ) )  =  B ,  ( F `
  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )   =>    |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
 
8-Aug-2023difinfinf 7236 An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
 ~<_  ( A  \  B ) )
 
8-Aug-2023difinfsn 7235 An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A 
 \  { B }
 ) )
 
7-Aug-2023ctinf 12967 A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
 |-  ( A  ~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f  f : om -onto-> A  /\  om  ~<_  A ) )
 
7-Aug-2023inffinp1 12966 An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  om  ~<_  A )   &    |-  ( ph  ->  B  C_  A )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  E. x  e.  A  -.  x  e.  B )
 
7-Aug-2023ctinfom 12965 A condition for a set being countably infinite. Restates ennnfone 12962 in terms of  om and function image. Like ennnfone 12962 the condition can be summarized as  A being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
 |-  ( A  ~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
 ( f : om -onto-> A  /\  A. n  e. 
 om  E. k  e.  om  -.  ( f `  k
 )  e.  ( f
 " n ) ) ) )
 
6-Aug-2023rerestcntop 15197 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
6-Aug-2023tgioo2cntop 15196 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( topGen `  ran  (,) )  =  ( Jt  RR )
 
4-Aug-2023nninffeq 16297 Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
 |-  ( ph  ->  F : --> NN0 )   &    |-  ( ph  ->  G : --> NN0 )   &    |-  ( ph  ->  ( F `  ( x  e.  om  |->  1o )
 )  =  ( G `
  ( x  e. 
 om  |->  1o ) ) )   &    |-  ( ph  ->  A. n  e. 
 om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )   =>    |-  ( ph  ->  F  =  G )
 
3-Aug-2023txvalex 14893 Existence of the binary topological product. If  R and 
S are known to be topologies, see txtop 14899. (Contributed by Jim Kingdon, 3-Aug-2023.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S )  e.  _V )
 
3-Aug-2023ablgrpd 13793 An Abelian group is a group, deduction form of ablgrp 13792. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e.  Grp )
 
3-Aug-20231nsgtrivd 13722 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )   =>    |-  ( ph  ->  B  =  {  .0.  } )
 
3-Aug-2023triv1nsgd 13721 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )
 
3-Aug-2023trivnsgd 13720 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  =  { B } )
 
3-Aug-20230idnsgd 13719 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  { {  .0.  } ,  B }  C_  (NrmSGrp `  G )
 )
 
3-Aug-2023trivsubgsnd 13704 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (SubGrp `  G )  =  { B } )
 
3-Aug-2023trivsubgd 13703 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   &    |-  ( ph  ->  A  e.  (SubGrp `  G )
 )   =>    |-  ( ph  ->  A  =  B )
 
3-Aug-2023mulgcld 13647 Deduction associated with mulgcl 13642. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
3-Aug-2023hashfingrpnn 13535 A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
3-Aug-2023hashfinmndnn 13431 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
3-Aug-2023dvdsgcdidd 12481 The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  ||  N )   =>    |-  ( ph  ->  ( M  gcd  N )  =  M )
 
3-Aug-2023gcdmultipled 12480 The greatest common divisor of a nonnegative integer  M and a multiple of it is  M itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  ( N  x.  M ) )  =  M )
 
3-Aug-2023fihashelne0d 10986 A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  -.  ( `  A )  =  0 )
 
3-Aug-2023phpeqd 7065 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6995 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B 
 C_  A )   &    |-  ( ph  ->  A  ~~  B )   =>    |-  ( ph  ->  A  =  B )
 
3-Aug-2023enpr2d 6942 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  { A ,  B }  ~~  2o )
 
3-Aug-2023elrnmpt2d 4955 Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  C  e.  ran 
 F )   =>    |-  ( ph  ->  E. x  e.  A  C  =  B )
 
3-Aug-2023elrnmptdv 4954 Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  V )   &    |-  (
 ( ph  /\  x  =  C )  ->  D  =  B )   =>    |-  ( ph  ->  D  e.  ran  F )
 
3-Aug-2023rspcime 2894 Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ( ph  /\  x  =  A )  ->  ps )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
3-Aug-2023neqcomd 2214 Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  -.  B  =  A )
 
2-Aug-2023dvid 15334 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( CC  _D  (  _I  |`  CC ) )  =  ( CC  X.  { 1 } )
 
2-Aug-2023dvconst 15333 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A }
 ) )  =  ( CC  X.  { 0 } ) )
 
2-Aug-2023dvidlemap 15330 Lemma for dvid 15334 and dvconst 15333. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  F : CC --> CC )   &    |-  (
 ( ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( CC  _D  F )  =  ( CC  X.  { B }
 ) )
 
2-Aug-2023diveqap1bd 8951 If two complex numbers are equal, their quotient is one. One-way deduction form of diveqap1 8820. Converse of diveqap1d 8913. (Contributed by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  /  B )  =  1 )
 
31-Jul-2023mul0inf 11718 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11539 and mulap0bd 8772 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
 
31-Jul-2023mul0eqap 8785 If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   &    |-  ( ph  ->  ( A  x.  B )  =  0
 )   =>    |-  ( ph  ->  ( A  =  0  \/  B  =  0 )
 )
 
31-Jul-2023apcon4bid 8739 Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A #  B  <->  C #  D )
 )   =>    |-  ( ph  ->  ( A  =  B  <->  C  =  D ) )
 
30-Jul-2023uzennn 10625 An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( M  e.  ZZ  ->  ( ZZ>= `  M )  ~~  NN )

  Copyright terms: Public domain W3C HTML validation [external]