![]() |
Intuitionistic Logic Explorer Most Recent Proofs |
|
Mirrors > Home > ILE Home > Th. List > Recent | MPE Most Recent Other > MM 100 |
See the MPE Most Recent Proofs page for news and some useful links.
Color key: | ![]() |
![]() |
Date | Label | Description |
---|---|---|
Theorem | ||
15-Feb-2025 | tapeq2 7243 | Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.) |
⊢ (𝐴 = 𝐵 → (𝑅 TAp 𝐴 ↔ 𝑅 TAp 𝐵)) | ||
14-Feb-2025 | exmidmotap 7251 | The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) | ||
14-Feb-2025 | exmidapne 7250 | Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.) |
⊢ (EXMID → (𝑅 TAp 𝐴 ↔ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)})) | ||
8-Feb-2025 | 2oneel 7246 | ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} | ||
8-Feb-2025 | tapeq1 7242 | Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.) |
⊢ (𝑅 = 𝑆 → (𝑅 TAp 𝐴 ↔ 𝑆 TAp 𝐴)) | ||
6-Feb-2025 | 2omotap 7249 | If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.) |
⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) | ||
6-Feb-2025 | 2omotaplemst 7248 | Lemma for 2omotap 7249. (Contributed by Jim Kingdon, 6-Feb-2025.) |
⊢ ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑) | ||
6-Feb-2025 | 2omotaplemap 7247 | Lemma for 2omotap 7249. (Contributed by Jim Kingdon, 6-Feb-2025.) |
⊢ (¬ ¬ 𝜑 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ (𝜑 ∧ 𝑢 ≠ 𝑣))} TAp 2o) | ||
6-Feb-2025 | 2onetap 7245 | Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.) |
⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o | ||
5-Feb-2025 | netap 7244 | Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) | ||
5-Feb-2025 | df-tap 7241 | Tight apartness predicate. A relation 𝑅 is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.) |
⊢ (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) | ||
28-Jan-2025 | dvdsrex 13092 | Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.) |
⊢ (𝑅 ∈ SRing → (∥r‘𝑅) ∈ V) | ||
24-Jan-2025 | reldvdsrsrg 13086 | The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.) |
⊢ (𝑅 ∈ SRing → Rel (∥r‘𝑅)) | ||
18-Jan-2025 | rerecapb 8789 | A real number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 18-Jan-2025.) |
⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) | ||
18-Jan-2025 | recapb 8617 | A complex number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies), generalized from real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.) |
⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) | ||
17-Jan-2025 | ressval3d 12513 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.) |
⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
17-Jan-2025 | strressid 12512 | Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑊) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) | ||
16-Jan-2025 | ressex 12507 | Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) ∈ V) | ||
16-Jan-2025 | ressvalsets 12506 | Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | ||
10-Jan-2025 | opprex 13070 | Existence of the opposite ring. If you know that 𝑅 is a ring, see opprring 13074. (Contributed by Jim Kingdon, 10-Jan-2025.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) | ||
10-Jan-2025 | mgpex 12962 | Existence of the multiplication group. If 𝑅 is known to be a semiring, see srgmgp 12977. (Contributed by Jim Kingdon, 10-Jan-2025.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) | ||
5-Jan-2025 | imbibi 252 | The antecedent of one side of a biconditional can be moved out of the biconditional to become the antecedent of the remaining biconditional. (Contributed by BJ, 1-Jan-2025.) (Proof shortened by Wolf Lammen, 5-Jan-2025.) |
⊢ (((𝜑 → 𝜓) ↔ 𝜒) → (𝜑 → (𝜓 ↔ 𝜒))) | ||
1-Jan-2025 | snss 3726 | The singleton of an element of a class is a subset of the class (inference form of snssg 3725). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) | ||
1-Jan-2025 | snssg 3725 | The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | ||
1-Jan-2025 | snssb 3724 | Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.) |
⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | ||
9-Dec-2024 | nninfwlpoim 7170 | Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
8-Dec-2024 | nninfwlpoimlemdc 7169 | Lemma for nninfwlpoim 7170. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
8-Dec-2024 | nninfwlpoimlemginf 7168 | Lemma for nninfwlpoim 7170. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) | ||
8-Dec-2024 | nninfwlpoimlemg 7167 | Lemma for nninfwlpoim 7170. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℕ∞) | ||
7-Dec-2024 | nninfwlpor 7166 | The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | ||
7-Dec-2024 | nninfwlporlem 7165 | Lemma for nninfwlpor 7166. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) & ⊢ (𝜑 → ω ∈ WOmni) ⇒ ⊢ (𝜑 → DECID 𝑋 = 𝑌) | ||
6-Dec-2024 | nninfwlporlemd 7164 | Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦ 1o))) | ||
3-Dec-2024 | nninfwlpo 7171 | Decidability of equality for ℕ∞ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.) |
⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | ||
3-Dec-2024 | nninfdcinf 7163 | The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
⊢ (𝜑 → ω ∈ WOmni) & ⊢ (𝜑 → 𝑁 ∈ ℕ∞) ⇒ ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) | ||
28-Nov-2024 | basmexd 12504 | A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ V) | ||
22-Nov-2024 | eliotaeu 5201 | An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.) |
⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | ||
22-Nov-2024 | eliota 5200 | An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.) |
⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | ||
18-Nov-2024 | basmex 12503 | A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) | ||
11-Nov-2024 | bj-con1st 14159 | Contraposition when the antecedent is a negated stable proposition. See con1dc 856. (Contributed by BJ, 11-Nov-2024.) |
⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
11-Nov-2024 | slotsdifdsndx 12635 | The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
11-Nov-2024 | tsetndxnstarvndx 12616 | The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.) |
⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
11-Nov-2024 | const 852 | Contraposition when the antecedent is a negated stable proposition. See comment of condc 853. (Contributed by BJ, 18-Nov-2023.) (Proof shortened by BJ, 11-Nov-2024.) |
⊢ (STAB 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | ||
7-Nov-2024 | ressbasd 12509 | Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
6-Nov-2024 | oppraddg 13073 | Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → + = (+g‘𝑂)) | ||
6-Nov-2024 | opprbasg 13072 | Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑂)) | ||
6-Nov-2024 | opprsllem 13071 | Lemma for opprbasg 13072 and oppraddg 13073. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) | ||
4-Nov-2024 | lgsfvalg 14073 | Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1)) | ||
1-Nov-2024 | qsqeqor 10616 | The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | ||
31-Oct-2024 | dsndxnmulrndx 12632 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
31-Oct-2024 | tsetndxnmulrndx 12615 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
31-Oct-2024 | tsetndxnbasendx 12613 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
31-Oct-2024 | basendxlttsetndx 12612 | The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (Base‘ndx) < (TopSet‘ndx) | ||
31-Oct-2024 | tsetndxnn 12611 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ∈ ℕ | ||
29-Oct-2024 | dsndxntsetndx 12634 | The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
29-Oct-2024 | slotsdnscsi 12633 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
29-Oct-2024 | slotstnscsi 12617 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.) |
⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
29-Oct-2024 | scandxnmulrndx 12589 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
29-Oct-2024 | fiubnn 10794 | A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
29-Oct-2024 | fiubz 10793 | A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
29-Oct-2024 | fiubm 10792 | Lemma for fiubz 10793 and fiubnn 10794. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℚ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
28-Oct-2024 | dsndxnbasendx 12630 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
28-Oct-2024 | basendxltdsndx 12629 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (dist‘ndx) | ||
28-Oct-2024 | dsndxnn 12628 | The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ∈ ℕ | ||
27-Oct-2024 | bj-nnst 14151 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 14398 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) |
⊢ ¬ ¬ STAB 𝜑 | ||
27-Oct-2024 | bj-imnimnn 14146 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 14145 as its last step. (Contributed by BJ, 27-Oct-2024.) |
⊢ (𝜑 → 𝜓) & ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ ¬ ¬ 𝜓 | ||
25-Oct-2024 | nnwosdc 12023 | Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | ||
23-Oct-2024 | nnwodc 12020 | Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
22-Oct-2024 | uzwodc 12021 | Well-ordering principle: any inhabited decidable subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) (Revised by Jim Kingdon, 22-Oct-2024.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ ∃𝑥 𝑥 ∈ 𝑆 ∧ ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝑆) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
21-Oct-2024 | nnnotnotr 14398 | Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 850, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.) |
⊢ ¬ ¬ (¬ ¬ 𝜑 → 𝜑) | ||
21-Oct-2024 | scandxnbasendx 12587 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
20-Oct-2024 | isprm5lem 12124 | Lemma for isprm5 12125. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.) |
⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) & ⊢ (𝜑 → 𝑋 ∈ (2...(𝑃 − 1))) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∥ 𝑃) | ||
19-Oct-2024 | resseqnbasd 12514 | The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠ (Base‘ndx) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) | ||
18-Oct-2024 | dsndxnplusgndx 12631 | The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | tsetndxnplusgndx 12614 | The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | scandxnplusgndx 12588 | The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
17-Oct-2024 | elnndc 9601 | Membership of an integer in ℕ is decidable. (Contributed by Jim Kingdon, 17-Oct-2024.) |
⊢ (𝑁 ∈ ℤ → DECID 𝑁 ∈ ℕ) | ||
14-Oct-2024 | 2zinfmin 11235 | Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) | ||
14-Oct-2024 | mingeb 11234 | Equivalence of ≤ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) | ||
13-Oct-2024 | pcxnn0cl 12293 | Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈ ℕ0*) | ||
13-Oct-2024 | xnn0letri 9790 | Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.) |
⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
13-Oct-2024 | xnn0dcle 9789 | Decidability of ≤ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.) |
⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → DECID 𝐴 ≤ 𝐵) | ||
9-Oct-2024 | nn0leexp2 10675 | Ordering law for exponentiation. (Contributed by Jim Kingdon, 9-Oct-2024.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) | ||
8-Oct-2024 | pclemdc 12271 | Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) | ||
8-Oct-2024 | elnn0dc 9600 | Membership of an integer in ℕ0 is decidable. (Contributed by Jim Kingdon, 8-Oct-2024.) |
⊢ (𝑁 ∈ ℤ → DECID 𝑁 ∈ ℕ0) | ||
7-Oct-2024 | pclemub 12270 | Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
7-Oct-2024 | pclem0 12269 | Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴) | ||
7-Oct-2024 | nn0ltexp2 10674 | Special case of ltexp2 14027 which we use here because we haven't yet defined df-rpcxp 13947 which is used in the current proof of ltexp2 14027. (Contributed by Jim Kingdon, 7-Oct-2024.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
6-Oct-2024 | suprzcl2dc 11939 | The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 7923.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
5-Oct-2024 | zsupssdc 11938 | An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 7923.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
5-Oct-2024 | suprzubdc 11936 | The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
1-Oct-2024 | infex2g 7027 | Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.) |
⊢ (𝐴 ∈ 𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V) | ||
30-Sep-2024 | unbendc 12438 | An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) | ||
30-Sep-2024 | prmdc 12113 | Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.) |
⊢ (𝑁 ∈ ℕ → DECID 𝑁 ∈ ℙ) | ||
30-Sep-2024 | dcfi 6974 | Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∀𝑥 ∈ 𝐴 𝜑) | ||
29-Sep-2024 | ssnnct 12431 | A decidable subset of ℕ is countable. (Contributed by Jim Kingdon, 29-Sep-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
29-Sep-2024 | ssnnctlemct 12430 | Lemma for ssnnct 12431. The result. (Contributed by Jim Kingdon, 29-Sep-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
28-Sep-2024 | nninfdcex 11937 | A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
27-Sep-2024 | infregelbex 9587 | Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.) |
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) | ||
26-Sep-2024 | nninfdclemp1 12434 | Lemma for nninfdc 12437. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) & ⊢ (𝜑 → 𝑈 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1))) | ||
26-Sep-2024 | nnminle 12019 | The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12018. (Contributed by Jim Kingdon, 26-Sep-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵) | ||
25-Sep-2024 | nninfdclemcl 12432 | Lemma for nninfdc 12437. (Contributed by Jim Kingdon, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴) | ||
24-Sep-2024 | nninfdclemlt 12435 | Lemma for nninfdc 12437. The function from nninfdclemf 12433 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) & ⊢ (𝜑 → 𝑈 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑈 < 𝑉) ⇒ ⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉)) | ||
23-Sep-2024 | nninfdc 12437 | An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ω ≼ 𝐴) | ||
23-Sep-2024 | nninfdclemf1 12436 | Lemma for nninfdc 12437. The function from nninfdclemf 12433 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) ⇒ ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) | ||
23-Sep-2024 | nninfdclemf 12433 | Lemma for nninfdc 12437. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) | ||
23-Sep-2024 | nnmindc 12018 | An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) | ||
19-Sep-2024 | ssomct 12429 | A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.) |
⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
14-Sep-2024 | nnpredlt 4620 | The predecessor (see nnpredcl 4619) of a nonzero natural number is less than (see df-iord 4363) that number. (Contributed by Jim Kingdon, 14-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
13-Sep-2024 | nninfisollemeq 7124 | Lemma for nninfisol 7125. The case where 𝑁 is a successor and 𝑁 and 𝑋 are equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 ≠ ∅) & ⊢ (𝜑 → (𝑋‘∪ 𝑁) = 1o) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
13-Sep-2024 | nninfisollemne 7123 | Lemma for nninfisol 7125. A case where 𝑁 is a successor and 𝑁 and 𝑋 are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 ≠ ∅) & ⊢ (𝜑 → (𝑋‘∪ 𝑁) = ∅) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
13-Sep-2024 | nninfisollem0 7122 | Lemma for nninfisol 7125. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 = ∅) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
12-Sep-2024 | nninfisol 7125 | Finite elements of ℕ∞ are isolated. That is, given a natural number and any element of ℕ∞, it is decidable whether the natural number (when converted to an element of ℕ∞) is equal to the given element of ℕ∞. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence 𝑋 to decide whether it is equal to 𝑁 (in fact, you only need to look at two elements and 𝑁 tells you where to look). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ∞) → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
7-Sep-2024 | eulerthlemfi 12211 | Lemma for eulerth 12216. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
7-Sep-2024 | modqexp 10632 | Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐷) & ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ⇒ ⊢ (𝜑 → ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷)) | ||
5-Sep-2024 | eulerthlemh 12214 | Lemma for eulerth 12216. A permutation of (1...(ϕ‘𝑁)). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 5-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) & ⊢ 𝐻 = (◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))) ⇒ ⊢ (𝜑 → 𝐻:(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁))) | ||
2-Sep-2024 | eulerthlemth 12215 | Lemma for eulerth 12216. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
2-Sep-2024 | eulerthlema 12213 | Lemma for eulerth 12216. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) | ||
2-Sep-2024 | eulerthlemrprm 12212 | Lemma for eulerth 12216. 𝑁 and ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = 1) | ||
30-Aug-2024 | fprodap0f 11628 | A finite product of terms apart from zero is apart from zero. A version of fprodap0 11613 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) | ||
28-Aug-2024 | fprodrec 11621 | The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵)) | ||
26-Aug-2024 | exmidontri2or 7236 | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
26-Aug-2024 | exmidontri 7232 | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
26-Aug-2024 | ontri2orexmidim 4568 | Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4567. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝜑) | ||
26-Aug-2024 | ontriexmidim 4518 | Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4517. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → DECID 𝜑) | ||
25-Aug-2024 | onntri2or 7239 | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
25-Aug-2024 | onntri3or 7238 | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
25-Aug-2024 | csbcow 3068 | Composition law for chained substitutions into a class. Version of csbco 3067 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
25-Aug-2024 | cbvreuvw 2709 | Version of cbvreuv 2705 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
25-Aug-2024 | cbvrexvw 2708 | Version of cbvrexv 2704 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
25-Aug-2024 | cbvralvw 2707 | Version of cbvralv 2703 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
25-Aug-2024 | cbvabw 2300 | Version of cbvab 2301 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
25-Aug-2024 | nfsbv 1947 | If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1946 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | ||
25-Aug-2024 | cbvexvw 1920 | Change bound variable. See cbvexv 1918 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1448. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
25-Aug-2024 | cbvalvw 1919 | Change bound variable. See cbvalv 1917 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1448. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
25-Aug-2024 | nfal 1576 | If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1510. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦𝜑 | ||
24-Aug-2024 | gcdcomd 11958 | The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
21-Aug-2024 | dvds2addd 11820 | Deduction form of dvds2add 11816. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 + 𝑁)) | ||
17-Aug-2024 | fprodcl2lem 11597 | Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
16-Aug-2024 | if0ab 14213 |
Expression of a conditional class as a class abstraction when the False
alternative is the empty class: in that case, the conditional class is
the extension, in the True alternative, of the condition.
Remark: a consequence which could be formalized is the inclusion ⊢ if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3582, ⊢ (𝐴 ∈ 𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 14214 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.) |
⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} | ||
16-Aug-2024 | fprodunsn 11596 | Multiply in an additional term in a finite product. See also fprodsplitsn 11625 which is the same but with a Ⅎ𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.) |
⊢ Ⅎ𝑘𝐷 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) | ||
15-Aug-2024 | bj-charfundcALT 14217 | Alternate proof of bj-charfundc 14216. It was expected to be much shorter since it uses bj-charfun 14215 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) | ||
15-Aug-2024 | bj-charfun 14215 | Properties of the characteristic function on the class 𝑋 of the class 𝐴. (Contributed by BJ, 15-Aug-2024.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) ⇒ ⊢ (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) | ||
15-Aug-2024 | fmelpw1o 14214 |
With a formula 𝜑 one can associate an element of
𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 851, which translate to 1o and ∅
respectively by iftrue 3539
and iffalse 3542, giving pwtrufal 14403).
As proved in if0ab 14213, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o | ||
15-Aug-2024 | cnstab 8592 | Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵 → 𝐴 = 𝐵 as defined at df-stab 831. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵) | ||
15-Aug-2024 | subap0d 8591 | Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) # 0) | ||
15-Aug-2024 | ifexd 4481 | Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) | ||
15-Aug-2024 | ifelpwun 4480 | Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) | ||
15-Aug-2024 | ifelpwund 4479 | Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | ||
15-Aug-2024 | ifelpwung 4478 | Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | ||
15-Aug-2024 | ifidss 3549 | A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.) |
⊢ if(𝜑, 𝐴, 𝐴) ⊆ 𝐴 | ||
15-Aug-2024 | ifssun 3548 | A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | ||
12-Aug-2024 | exmidontriimlem2 7215 | Lemma for exmidontriim 7218. (Contributed by Jim Kingdon, 12-Aug-2024.) |
⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | ||
12-Aug-2024 | exmidontriimlem1 7214 | Lemma for exmidontriim 7218. A variation of r19.30dc 2624. (Contributed by Jim Kingdon, 12-Aug-2024.) |
⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ∧ EXMID) → (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜒)) | ||
11-Aug-2024 | nndc 851 |
Double negation of decidability of a formula. Intuitionistic logic
refutes the negation of decidability (but does not prove decidability) of
any formula.
This should not trick the reader into thinking that ¬ ¬ EXMID is provable in intuitionistic logic. Indeed, if we could quantify over formula metavariables, then generalizing nnexmid 850 over 𝜑 would give "⊢ ∀𝜑¬ ¬ DECID 𝜑", but EXMID is "∀𝜑DECID 𝜑", so proving ¬ ¬ EXMID would amount to proving "¬ ¬ ∀𝜑DECID 𝜑", which is not implied by the above theorem. Indeed, the converse of nnal 1649 does not hold. Since our system does not allow quantification over formula metavariables, we can reproduce this argument by representing formulas as subsets of 𝒫 1o, like we do in our definition of EXMID (df-exmid 4192): then, we can prove ∀𝑥 ∈ 𝒫 1o¬ ¬ DECID 𝑥 = 1o but we cannot prove ¬ ¬ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o because the converse of nnral 2467 does not hold. Actually, ¬ ¬ EXMID is not provable in intuitionistic logic since intuitionistic logic has models satisfying ¬ EXMID and noncontradiction holds (pm3.24 693). (Contributed by BJ, 9-Oct-2019.) Add explanation on non-provability of ¬ ¬ EXMID. (Revised by BJ, 11-Aug-2024.) |
⊢ ¬ ¬ DECID 𝜑 | ||
10-Aug-2024 | exmidontriim 7218 | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
10-Aug-2024 | exmidontriimlem4 7217 | Lemma for exmidontriim 7218. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
10-Aug-2024 | exmidontriimlem3 7216 | Lemma for exmidontriim 7218. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
10-Aug-2024 | nnnninf2 7119 | Canonical embedding of suc ω into ℕ∞. (Contributed by BJ, 10-Aug-2024.) |
⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | ||
10-Aug-2024 | infnninf 7116 | The point at infinity in ℕ∞ is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4670 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | ||
9-Aug-2024 | ss1o0el1o 6906 | Reformulation of ss1o0el1 4194 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.) |
⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) | ||
9-Aug-2024 | pw1dc0el 6905 | Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | ||
9-Aug-2024 | ss1o0el1 4194 | A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) | ||
8-Aug-2024 | pw1dc1 6907 | If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) | ||
7-Aug-2024 | pw1fin 6904 | Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
⊢ (EXMID ↔ 𝒫 1o ∈ Fin) | ||
7-Aug-2024 | elomssom 4601 | A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4602. (Revised by BJ, 7-Aug-2024.) |
⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | ||
6-Aug-2024 | bj-charfunbi 14219 |
In an ambient set 𝑋, if membership in 𝐴 is
stable, then it is
decidable if and only if 𝐴 has a characteristic function.
This characterization can be applied to singletons when the set 𝑋 has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 STAB 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴 ↔ ∃𝑓 ∈ (2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) | ||
6-Aug-2024 | bj-charfunr 14218 |
If a class 𝐴 has a "weak"
characteristic function on a class 𝑋,
then negated membership in 𝐴 is decidable (in other words,
membership in 𝐴 is testable) in 𝑋.
The hypothesis imposes that 𝑋 be a set. As usual, it could be formulated as ⊢ (𝜑 → (𝐹:𝑋⟶ω ∧ ...)) to deal with general classes, but that extra generality would not make the theorem much more useful. The theorem would still hold if the codomain of 𝑓 were any class with testable equality to the point where (𝑋 ∖ 𝐴) is sent. (Contributed by BJ, 6-Aug-2024.) |
⊢ (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID ¬ 𝑥 ∈ 𝐴) | ||
6-Aug-2024 | bj-charfundc 14216 | Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) | ||
6-Aug-2024 | prodssdc 11581 | Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))) ⇝ 𝑦)) & ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 1) & ⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | ||
5-Aug-2024 | fnmptd 14212 | The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 Fn 𝐴) | ||
5-Aug-2024 | funmptd 14211 |
The maps-to notation defines a function (deduction form).
Note: one should similarly prove a deduction form of funopab4 5249, then prove funmptd 14211 from it, and then prove funmpt 5250 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
5-Aug-2024 | bj-dcfal 14163 | The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.) |
⊢ DECID ⊥ | ||
5-Aug-2024 | bj-dctru 14161 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) |
⊢ DECID ⊤ | ||
5-Aug-2024 | bj-stfal 14150 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) |
⊢ STAB ⊥ | ||
5-Aug-2024 | bj-sttru 14148 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) |
⊢ STAB ⊤ | ||
5-Aug-2024 | prod1dc 11578 | Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘 ∈ 𝐴 1 = 1) | ||
5-Aug-2024 | 2ssom 6519 | The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.) |
⊢ 2o ⊆ ω | ||
2-Aug-2024 | onntri52 7237 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
2-Aug-2024 | onntri24 7235 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
2-Aug-2024 | onntri45 7234 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ¬ ¬ EXMID) | ||
2-Aug-2024 | onntri51 7233 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
2-Aug-2024 | onntri13 7231 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
2-Aug-2024 | onntri35 7230 |
Double negated ordinal trichotomy.
There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), (3) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (4) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7231), (3) implies (5) (onntri35 7230), (5) implies (1) (onntri51 7233), (2) implies (4) (onntri24 7235), (4) implies (5) (onntri45 7234), and (5) implies (2) (onntri52 7237). Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 or the 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 form, as shown in exmidontri 7232 and exmidontri2or 7236, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7238 and (4) by onntri2or 7239. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ EXMID) | ||
1-Aug-2024 | nnral 2467 | The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1649. (Contributed by Jim Kingdon, 1-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑) | ||
31-Jul-2024 | 3nsssucpw1 7229 | Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | ||
31-Jul-2024 | sucpw1nss3 7228 | Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) | ||
30-Jul-2024 | 3nelsucpw1 7227 | Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ 3o ∈ suc 𝒫 1o | ||
30-Jul-2024 | sucpw1nel3 7226 | The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ suc 𝒫 1o ∈ 3o | ||
30-Jul-2024 | sucpw1ne3 7225 | Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) | ||
30-Jul-2024 | pw1nel3 7224 | Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | ||
30-Jul-2024 | pw1ne3 7223 | The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 3o | ||
30-Jul-2024 | pw1ne1 7222 | The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 1o | ||
30-Jul-2024 | pw1ne0 7221 | The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ ∅ | ||
29-Jul-2024 | grpcld 12780 | Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
29-Jul-2024 | pw1on 7219 | The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
⊢ 𝒫 1o ∈ On | ||
28-Jul-2024 | exmidpweq 6903 | Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.) |
⊢ (EXMID ↔ 𝒫 1o = 2o) | ||
27-Jul-2024 | dcapnconstALT 14465 | Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 14464 by means of dceqnconst 14463. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
27-Jul-2024 | reap0 14462 | Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0) | ||
26-Jul-2024 | nconstwlpolemgt0 14467 | Lemma for nconstwlpo 14469. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) & ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐺‘𝑥) = 1) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
26-Jul-2024 | nconstwlpolem0 14466 | Lemma for nconstwlpo 14469. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
24-Jul-2024 | tridceq 14460 | Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 14447 and redcwlpo 14459). Thus, this is an analytic analogue to lpowlpo 7160. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) | ||
24-Jul-2024 | iswomni0 14455 | Weak omniscience stated in terms of equality with 0. Like iswomninn 14454 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) | ||
24-Jul-2024 | lpowlpo 7160 | LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7159. There is an analogue in terms of analytic omniscience principles at tridceq 14460. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (ω ∈ Omni → ω ∈ WOmni) | ||
23-Jul-2024 | nconstwlpolem 14468 | Lemma for nconstwlpo 14469. (Contributed by Jim Kingdon, 23-Jul-2024.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℤ) & ⊢ (𝜑 → (𝐹‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) & ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) | ||
23-Jul-2024 | dceqnconst 14463 | Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 14459 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
23-Jul-2024 | redc0 14461 | Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0) | ||
23-Jul-2024 | canth 5823 | No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1500 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 | ||
22-Jul-2024 | nconstwlpo 14469 | Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℤ) & ⊢ (𝜑 → (𝐹‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) ⇒ ⊢ (𝜑 → ω ∈ WOmni) | ||
15-Jul-2024 | fprodseq 11575 | The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.) |
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) | ||
14-Jul-2024 | rexbid2 2482 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
14-Jul-2024 | ralbid2 2481 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
12-Jul-2024 | 2irrexpqap 14063 | There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12163, 2logb9irrap 14062 and sqrt2cxp2logb9e3 14060. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.) |
⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) | ||
12-Jul-2024 | 2logb9irrap 14062 | Example for logbgcd1irrap 14055. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.) |
⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) | ||
11-Jul-2024 | logbgcd1irraplemexp 14053 | Lemma for logbgcd1irrap 14055. Apartness of 𝑋↑𝑁 and 𝐵↑𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.) |
⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) | ||
11-Jul-2024 | reapef 13866 | Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵))) | ||
10-Jul-2024 | apcxp2 14025 | Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.) |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) | ||
9-Jul-2024 | logbgcd1irraplemap 14054 | Lemma for logbgcd1irrap 14055. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) | ||
9-Jul-2024 | apexp1 10682 | Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵)) | ||
5-Jul-2024 | logrpap0 13965 | The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) → (log‘𝐴) # 0) | ||
3-Jul-2024 | rplogbval 14030 | Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.) |
⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | ||
3-Jul-2024 | logrpap0d 13966 | Deduction form of logrpap0 13965. (Contributed by Jim Kingdon, 3-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 # 1) ⇒ ⊢ (𝜑 → (log‘𝐴) # 0) | ||
3-Jul-2024 | logrpap0b 13964 | The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 # 1 ↔ (log‘𝐴) # 0)) | ||
28-Jun-2024 | 2o01f 14402 | Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} | ||
28-Jun-2024 | 012of 14401 | Mapping zero and one between ℕ0 and ω style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (◡𝐺 ↾ {0, 1}):{0, 1}⟶2o | ||
27-Jun-2024 | iooreen 14439 | An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.) |
⊢ (0(,)1) ≈ ℝ | ||
27-Jun-2024 | iooref1o 14438 | A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥)))) ⇒ ⊢ 𝐹:ℝ–1-1-onto→(0(,)1) | ||
25-Jun-2024 | neapmkvlem 14470 | Lemma for neapmkv 14471. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ ((𝜑 ∧ 𝐴 ≠ 1) → 𝐴 # 1) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) | ||
25-Jun-2024 | ismkvnn 14457 | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
25-Jun-2024 | ismkvnnlem 14456 | Lemma for ismkvnn 14457. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
25-Jun-2024 | enmkvlem 7153 | Lemma for enmkv 7154. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov)) | ||
24-Jun-2024 | neapmkv 14471 | If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) | ||
24-Jun-2024 | dcapnconst 14464 |
Decidability of real number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 14447 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 14463 and in fact this theorem can be proved using dceqnconst 14463 as shown at dcapnconstALT 14465. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
24-Jun-2024 | enmkv 7154 | Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or ℕ0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6425 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov)) | ||
21-Jun-2024 | redcwlpolemeq1 14458 | Lemma for redcwlpo 14459. A biconditionalized version of trilpolemeq1 14444. (Contributed by Jim Kingdon, 21-Jun-2024.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
20-Jun-2024 | redcwlpo 14459 |
Decidability of real number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 14458). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10233 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
20-Jun-2024 | iswomninn 14454 | Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7158 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
20-Jun-2024 | iswomninnlem 14453 | Lemma for iswomnimap 7158. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
20-Jun-2024 | enwomni 7162 | Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6425 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) | ||
20-Jun-2024 | enwomnilem 7161 | Lemma for enwomni 7162. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | ||
19-Jun-2024 | rpabscxpbnd 14026 | Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 0 < (ℜ‘𝐵)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 𝑀) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π)))) | ||
16-Jun-2024 | rpcxpsqrt 14009 | The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) | ||
13-Jun-2024 | rpcxpadd 13993 | Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
12-Jun-2024 | cxpap0 13992 | Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) # 0) | ||
12-Jun-2024 | rpcncxpcl 13990 | Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
12-Jun-2024 | rpcxp0 13986 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐0) = 1) | ||
12-Jun-2024 | cxpexpnn 13984 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
12-Jun-2024 | cxpexprp 13983 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
12-Jun-2024 | rpcxpef 13982 | Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | ||
12-Jun-2024 | df-rpcxp 13947 | Define the power function on complex numbers. Because df-relog 13946 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.) |
⊢ ↑𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) | ||
10-Jun-2024 | trirec0xor 14449 |
Version of trirec0 14448 with exclusive-or.
The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) | ||
10-Jun-2024 | trirec0 14448 |
Every real number having a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 14447). (Contributed by Jim Kingdon, 10-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0)) | ||
9-Jun-2024 | omniwomnimkv 7159 | A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO ↔ WLPO ∧ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)) | ||
9-Jun-2024 | iswomnimap 7158 | The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | ||
9-Jun-2024 | iswomni 7157 | The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
9-Jun-2024 | df-womni 7156 |
A weakly omniscient set is one where we can decide whether a predicate
(here represented by a function 𝑓) holds (is equal to 1o) for
all elements or not. Generalization of definition 2.4 of [Pierik],
p. 9.
In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO). The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | ||
1-Jun-2024 | cmnmndd 12938 | A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝐺 ∈ CMnd) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
1-Jun-2024 | grpmndd 12779 | A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
29-May-2024 | pw1nct 14408 | A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
⊢ (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o)) | ||
28-May-2024 | sssneq 14407 | Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.) |
⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) | ||
26-May-2024 | elpwi2 4155 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
24-May-2024 | dvmptcjx 13853 | Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) | ||
23-May-2024 | cbvralfw 2694 | Rule used to change bound variables, using implicit substitution. Version of cbvralf 2696 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1507 and ax-bndl 1509 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
22-May-2024 | efltlemlt 13862 | Lemma for eflt 13863. The converse of efltim 11690 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (exp‘𝐴) < (exp‘𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
21-May-2024 | eflt 13863 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
19-May-2024 | apdifflemr 14451 | Lemma for apdiff 14452. (Contributed by Jim Kingdon, 19-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑆 ∈ ℚ) & ⊢ (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1))) & ⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆)))) ⇒ ⊢ (𝜑 → 𝐴 # 𝑆) | ||
18-May-2024 | apdifflemf 14450 | Lemma for apdiff 14452. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑄 < 𝑅) & ⊢ (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) # (abs‘(𝐴 − 𝑅))) | ||
17-May-2024 | apdiff 14452 | The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
⊢ (𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞 ≠ 𝑟 → (abs‘(𝐴 − 𝑞)) # (abs‘(𝐴 − 𝑟))))) | ||
16-May-2024 | crnggrpd 13019 | A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
16-May-2024 | crngringd 13018 | A commutative ring is a ring. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
16-May-2024 | ringgrpd 13014 | A ring is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
15-May-2024 | reeff1oleme 13860 | Lemma for reeff1o 13861. (Contributed by Jim Kingdon, 15-May-2024.) |
⊢ (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) | ||
14-May-2024 | df-relog 13946 | Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.) |
⊢ log = ◡(exp ↾ ℝ) | ||
12-May-2024 | dvdstrd 11821 | The divides relation is transitive, a deduction version of dvdstr 11819. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ 𝑁) | ||
7-May-2024 | ioocosf1o 13942 | The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.) |
⊢ (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1) | ||
7-May-2024 | cos0pilt1 13940 | Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.) |
⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) | ||
6-May-2024 | cos11 13941 | Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | ||
5-May-2024 | omiunct 12428 | The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12424 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) | ||
5-May-2024 | ctiunctal 12425 | Variation of ctiunct 12424 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.) |
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | ||
3-May-2024 | cc4n 7261 | Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7260, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
3-May-2024 | cc4f 7259 | Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ Ⅎ𝑛𝐴 & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
1-May-2024 | cc4 7260 | Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
29-Apr-2024 | cc3 7258 | Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 𝐹 ∈ V) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ 𝐹) & ⊢ (𝜑 → 𝑁 ≈ ω) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) | ||
27-Apr-2024 | cc2 7257 | Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐹 Fn ω) & ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
27-Apr-2024 | cc2lem 7256 | Lemma for cc2 7257. (Contributed by Jim Kingdon, 27-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐹 Fn ω) & ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) & ⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴‘𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
27-Apr-2024 | cc1 7255 | Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) | ||
19-Apr-2024 | omctfn 12427 | Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o))) | ||
13-Apr-2024 | prodmodclem2 11569 | Lemma for prodmodc 11570. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | ||
11-Apr-2024 | prodmodclem2a 11568 | Lemma for prodmodc 11570. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁)) | ||
11-Apr-2024 | prodmodclem3 11567 | Lemma for prodmodc 11570. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁)) | ||
10-Apr-2024 | jcnd 652 | Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → ¬ (𝜓 → 𝜒)) | ||
4-Apr-2024 | prodrbdclem 11563 | Lemma for prodrbdc 11566. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( · , 𝐹)) | ||
24-Mar-2024 | prodfdivap 11539 | The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) # 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁))) | ||
24-Mar-2024 | prodfrecap 11538 | The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) # 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) | ||
23-Mar-2024 | prodfap0 11537 | The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) # 0) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0) | ||
22-Mar-2024 | prod3fmul 11533 | The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁))) | ||
21-Mar-2024 | df-proddc 11543 | Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sumdc 11346 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.) |
⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | ||
19-Mar-2024 | cos02pilt1 13939 | Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 19-Mar-2024.) |
⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) | ||
19-Mar-2024 | cosq34lt1 13938 | Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.) |
⊢ (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1) | ||
14-Mar-2024 | coseq0q4123 13922 | Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | ||
14-Mar-2024 | cosq23lt0 13921 | The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.) |
⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) | ||
9-Mar-2024 | pilem3 13871 | Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.) |
⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
9-Mar-2024 | exmidonfin 7187 | If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6866 and nnon 4606. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
⊢ (ω = (On ∩ Fin) → EXMID) | ||
9-Mar-2024 | exmidonfinlem 7186 | Lemma for exmidonfin 7187. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
⊢ 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ⇒ ⊢ (ω = (On ∩ Fin) → DECID 𝜑) | ||
8-Mar-2024 | sin0pilem2 13870 | Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.) |
⊢ ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) | ||
8-Mar-2024 | sin0pilem1 13869 | Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.) |
⊢ ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)) | ||
7-Mar-2024 | cosz12 13868 | Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.) |
⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 | ||
6-Mar-2024 | cos12dec 11759 | Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.) |
⊢ ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) | ||
2-Mar-2024 | dvrfvald 13127 | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) & ⊢ (𝜑 → / = (/r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) ⇒ ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) | ||
2-Mar-2024 | plusffvalg 12673 | The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | ||
25-Feb-2024 | insubm 12762 | The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.) |
⊢ ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴 ∩ 𝐵) ∈ (SubMnd‘𝑀)) | ||
25-Feb-2024 | mul2lt0pn 9751 | The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) < 0) | ||
25-Feb-2024 | mul2lt0np 9750 | The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | ||
25-Feb-2024 | lt0ap0 8595 | A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0) | ||
25-Feb-2024 | negap0d 8578 | The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → -𝐴 # 0) | ||
24-Feb-2024 | lt0ap0d 8596 | A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
20-Feb-2024 | ivthdec 13789 | The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑦) < (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
20-Feb-2024 | ivthinclemex 13787 | Lemma for ivthinc 13788. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) | ||
19-Feb-2024 | ivthinclemuopn 13783 | Lemma for ivthinc 13788. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} & ⊢ (𝜑 → 𝑆 ∈ 𝑅) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝑅 𝑞 < 𝑆) | ||
19-Feb-2024 | dedekindicc 13778 | A Dedekind cut identifies a unique real number. Similar to df-inp 7456 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
19-Feb-2024 | grpsubfvalg 12808 | Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) | ||
18-Feb-2024 | ivthinclemloc 13786 | Lemma for ivthinc 13788. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) | ||
18-Feb-2024 | ivthinclemdisj 13785 | Lemma for ivthinc 13788. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) | ||
18-Feb-2024 | ivthinclemur 13784 | Lemma for ivthinc 13788. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑅 ↔ ∃𝑞 ∈ 𝑅 𝑞 < 𝑟)) | ||
18-Feb-2024 | ivthinclemlr 13782 | Lemma for ivthinc 13788. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | ||
18-Feb-2024 | ivthinclemum 13780 | Lemma for ivthinc 13788. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) | ||
18-Feb-2024 | ivthinclemlm 13779 | Lemma for ivthinc 13788. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) | ||
17-Feb-2024 | 0subm 12761 | The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) | ||
17-Feb-2024 | mndissubm 12756 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) | ||
17-Feb-2024 | mgmsscl 12672 | If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) | ||
15-Feb-2024 | dedekindicclemeu 13776 | Lemma for dedekindicc 13778. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟)) & ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → ⊥) | ||
15-Feb-2024 | dedekindicclemlu 13775 | Lemma for dedekindicc 13778. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
15-Feb-2024 | dedekindicclemlub 13774 | Lemma for dedekindicc 13778. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | ||
15-Feb-2024 | dedekindicclemloc 13773 | Lemma for dedekindicc 13778. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) | ||
15-Feb-2024 | dedekindicclemub 13772 | Lemma for dedekindicc 13778. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | ||
15-Feb-2024 | dedekindicclemuub 13771 | Lemma for dedekindicc 13778. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 𝑧 < 𝐶) | ||
14-Feb-2024 | suplociccex 13770 | An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8020 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
14-Feb-2024 | suplociccreex 13769 | An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8020 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
6-Feb-2024 | ivthinclemlopn 13781 | Lemma for ivthinc 13788. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} & ⊢ (𝜑 → 𝑄 ∈ 𝐿) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝐿 𝑄 < 𝑟) | ||
5-Feb-2024 | ivthinc 13788 | The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
2-Feb-2024 | dedekindeulemuub 13762 | Lemma for dedekindeu 13768. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 𝑧 < 𝐴) | ||
31-Jan-2024 | dedekindeulemeu 13767 | Lemma for dedekindeu 13768. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ⊥) | ||
31-Jan-2024 | dedekindeulemlu 13766 | Lemma for dedekindeu 13768. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
31-Jan-2024 | dedekindeulemlub 13765 | Lemma for dedekindeu 13768. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | ||
31-Jan-2024 | dedekindeulemloc 13764 | Lemma for dedekindeu 13768. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) | ||
31-Jan-2024 | dedekindeulemub 13763 | Lemma for dedekindeu 13768. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | ||
30-Jan-2024 | axsuploc 8020 | An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7923 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
30-Jan-2024 | iotam 5204 | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
29-Jan-2024 | sgrpidmndm 12713 | A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 (∃𝑤 𝑤 ∈ 𝑒 ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd) | ||
24-Jan-2024 | axpre-suploclemres 7891 | Lemma for axpre-suploc 7892. The result. The proof just needs to define 𝐵 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ℝ), and apply suplocsr 7799. (Contributed by Jim Kingdon, 24-Jan-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) & ⊢ 𝐵 = {𝑤 ∈ R ∣ 〈𝑤, 0R〉 ∈ 𝐴} ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
23-Jan-2024 | ax-pre-suploc 7923 |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. Although this and ax-caucvg 7922 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7922. (Contributed by Jim Kingdon, 23-Jan-2024.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
23-Jan-2024 | axpre-suploc 7892 |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7923. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
22-Jan-2024 | suplocsr 7799 | An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
21-Jan-2024 | bj-el2oss1o 14182 | Shorter proof of el2oss1o 6438 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) | ||
21-Jan-2024 | ltm1sr 7767 | Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.) |
⊢ (𝐴 ∈ R → (𝐴 +R -1R) <R 𝐴) | ||
20-Jan-2024 | mndinvmod 12736 | Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) | ||
19-Jan-2024 | suplocsrlempr 7797 | Lemma for suplocsr 7799. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.) |
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) | ||
18-Jan-2024 | suplocsrlemb 7796 | Lemma for suplocsr 7799. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.) |
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ P ∀𝑣 ∈ P (𝑢<P 𝑣 → (∃𝑞 ∈ 𝐵 𝑢<P 𝑞 ∨ ∀𝑞 ∈ 𝐵 𝑞<P 𝑣))) | ||
16-Jan-2024 | suplocsrlem 7798 | Lemma for suplocsr 7799. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.) |
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
14-Jan-2024 | suplocexprlemlub 7714 | Lemma for suplocexpr 7715. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (𝑦<P 𝐵 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) | ||
14-Jan-2024 | suplocexprlemub 7713 | Lemma for suplocexpr 7715. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ 𝐵<P 𝑦) | ||
10-Jan-2024 | nfcsbw 3093 | Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3094 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 | ||
10-Jan-2024 | nfsbcdw 3091 | Version of nfsbcd 2982 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
10-Jan-2024 | cbvcsbw 3061 | Version of cbvcsb 3062 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
10-Jan-2024 | cbvsbcw 2990 | Version of cbvsbc 2991 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
10-Jan-2024 | cbvrex2vw 2715 | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2717 with a disjoint variable condition, which does not require ax-13 2150. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
10-Jan-2024 | cbvral2vw 2714 | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2716 with a disjoint variable condition, which does not require ax-13 2150. (Contributed by NM, 10-Aug-2004.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
10-Jan-2024 | cbvralw 2698 | Rule used to change bound variables, using implicit substitution. Version of cbvral 2699 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1507 and ax-bndl 1509 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
10-Jan-2024 | cbvrexfw 2695 | Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2697 with a disjoint variable condition, which does not require ax-13 2150. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
10-Jan-2024 | nfralw 2514 | Bound-variable hypothesis builder for restricted quantification. See nfralya 2517 for a version with 𝑦 and 𝐴 distinct instead of 𝑥 and 𝑦. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
10-Jan-2024 | nfraldw 2509 | Not-free for restricted universal quantification where 𝑥 and 𝑦 are distinct. See nfraldya 2512 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
10-Jan-2024 | nfabdw 2338 | Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2339 with a disjoint variable condition. (Contributed by Mario Carneiro, 8-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) | ||
10-Jan-2024 | cbv2w 1750 | Rule used to change bound variables, using implicit substitution. Version of cbv2 1749 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
9-Jan-2024 | suplocexprlemloc 7711 | Lemma for suplocexpr 7715. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ ∪ (1st “ 𝐴) ∨ 𝑟 ∈ (2nd ‘𝐵)))) | ||
9-Jan-2024 | suplocexprlemdisj 7710 | Lemma for suplocexpr 7715. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ¬ (𝑞 ∈ ∪ (1st “ 𝐴) ∧ 𝑞 ∈ (2nd ‘𝐵))) | ||
9-Jan-2024 | suplocexprlemru 7709 | Lemma for suplocexpr 7715. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | ||
9-Jan-2024 | suplocexprlemrl 7707 | Lemma for suplocexpr 7715. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q (𝑞 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ ∪ (1st “ 𝐴)))) | ||
9-Jan-2024 | suplocexprlem2b 7704 | Lemma for suplocexpr 7715. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | ||
9-Jan-2024 | suplocexprlemell 7703 | Lemma for suplocexpr 7715. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) | ||
7-Jan-2024 | suplocexpr 7715 | An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | ||
7-Jan-2024 | suplocexprlemex 7712 | Lemma for suplocexpr 7715. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐵 ∈ P) | ||
7-Jan-2024 | suplocexprlemmu 7708 | Lemma for suplocexpr 7715. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (2nd ‘𝐵)) | ||
7-Jan-2024 | suplocexprlemml 7706 | Lemma for suplocexpr 7715. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) | ||
7-Jan-2024 | suplocexprlemss 7705 | Lemma for suplocexpr 7715. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → 𝐴 ⊆ P) | ||
5-Jan-2024 | dedekindicclemicc 13777 | Lemma for dedekindicc 13778. Same as dedekindicc 13778, except that we merely show 𝑥 to be an element of (𝐴[,]𝐵). Later we will strengthen that to (𝐴(,)𝐵). (Contributed by Jim Kingdon, 5-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
5-Jan-2024 | dedekindeu 13768 | A Dedekind cut identifies a unique real number. Similar to df-inp 7456 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.) |
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
31-Dec-2023 | dvmptsubcn 13852 | Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) | ||
31-Dec-2023 | dvmptnegcn 13851 | Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵)) | ||
31-Dec-2023 | dvmptcmulcn 13850 | Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵))) | ||
31-Dec-2023 | rinvmod 12939 | Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6062. (Contributed by AV, 31-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) | ||
31-Dec-2023 | brm 4050 | If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.) |
⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) | ||
30-Dec-2023 | dvmptccn 13846 | Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0)) | ||
30-Dec-2023 | dvmptidcn 13845 | Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.) |
⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1) | ||
29-Dec-2023 | mndbn0 12724 | The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 12723). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) | ||
26-Dec-2023 | lidrididd 12693 | If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 12692) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
⊢ (𝜑 → 𝐿 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → 𝐿 = 0 ) | ||
26-Dec-2023 | lidrideqd 12692 | If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) |
⊢ (𝜑 → 𝐿 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) ⇒ ⊢ (𝜑 → 𝐿 = 𝑅) | ||
25-Dec-2023 | ctfoex 7111 | A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.) |
⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) | ||
23-Dec-2023 | enct 12417 | Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.) |
⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) | ||
23-Dec-2023 | enctlem 12416 | Lemma for enct 12417. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) | ||
23-Dec-2023 | omct 7110 | ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) | ||
21-Dec-2023 | dvcoapbr 13838 | The chain rule for derivatives at a point. The 𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶) hypothesis constrains what functions work for 𝐺. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → 𝑌 ⊆ 𝑇) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑌 (𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ⊆ ℂ) & ⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑇 D 𝐺)𝐿) & ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿)) | ||
19-Dec-2023 | apsscn 8594 | The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ | ||
19-Dec-2023 | aprcl 8593 | Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
⊢ (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | ||
18-Dec-2023 | limccoap 13814 | Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋}) → 𝑅 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶}) & ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶}) → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋} ↦ 𝑅) limℂ 𝑋)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶} ↦ 𝑆) limℂ 𝐶)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋} ↦ 𝑇) limℂ 𝑋)) | ||
16-Dec-2023 | cnreim 10971 | Complex apartness in terms of real and imaginary parts. See also apreim 8550 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)))) | ||
14-Dec-2023 | cnopnap 13761 | The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.) |
⊢ (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − ))) | ||
14-Dec-2023 | cnovex 13363 | The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) | ||
13-Dec-2023 | reopnap 13705 | The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.) |
⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) | ||
12-Dec-2023 | cnopncntop 13704 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.) |
⊢ ℂ ∈ (MetOpen‘(abs ∘ − )) | ||
12-Dec-2023 | unicntopcntop 13703 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.) |
⊢ ℂ = ∪ (MetOpen‘(abs ∘ − )) | ||
4-Dec-2023 | bj-pm2.18st 14158 | Clavius law for stable formulas. See pm2.18dc 855. (Contributed by BJ, 4-Dec-2023.) |
⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜑) → 𝜑)) | ||
4-Dec-2023 | bj-nnclavius 14145 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) |
⊢ ((¬ 𝜑 → 𝜑) → ¬ ¬ 𝜑) | ||
2-Dec-2023 | dvmulxx 13835 | The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 13833. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) | ||
1-Dec-2023 | dvmulxxbr 13833 | The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 13835. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) & ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) | ||
29-Nov-2023 | subctctexmid 14406 | If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.) |
⊢ (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o))) & ⊢ (𝜑 → ω ∈ Markov) ⇒ ⊢ (𝜑 → EXMID) | ||
29-Nov-2023 | ismkvnex 7147 | The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
28-Nov-2023 | ccfunen 7254 | Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ≈ ω) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
28-Nov-2023 | exmid1stab 4205 | If every proposition is stable, excluded middle follows. We are thinking of 𝑥 as a proposition and 𝑥 = {∅} as "𝑥 is true". (Contributed by Jim Kingdon, 28-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
27-Nov-2023 | df-cc 7253 | The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7199 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.) |
⊢ (CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) | ||
26-Nov-2023 | offeq 6090 | Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝐶 & ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) | ||
25-Nov-2023 | dvaddxx 13834 | The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 13832. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) | ||
25-Nov-2023 | dvaddxxbr 13832 | The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) & ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) | ||
25-Nov-2023 | dcnn 848 | Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 842. The relation between dcn 842 and dcnn 848 is analogous to that between notnot 629 and notnotnot 634 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 848 means that a proposition is testable if and only if its negation is testable, and dcn 842 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.) |
⊢ (DECID ¬ 𝜑 ↔ DECID ¬ ¬ 𝜑) | ||
24-Nov-2023 | bj-dcst 14169 | Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.) |
⊢ (DECID STAB 𝜑 ↔ STAB 𝜑) | ||
24-Nov-2023 | bj-nnbidc 14165 | If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 14152. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) | ||
24-Nov-2023 | bj-dcstab 14164 | A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) |
⊢ (DECID 𝜑 → STAB 𝜑) | ||
24-Nov-2023 | bj-fadc 14162 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ 𝜑 → DECID 𝜑) | ||
24-Nov-2023 | bj-trdc 14160 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) |
⊢ (𝜑 → DECID 𝜑) | ||
24-Nov-2023 | bj-stal 14157 | The universal quantification of a stable formula is stable. See bj-stim 14154 for implication, stabnot 833 for negation, and bj-stan 14155 for conjunction. (Contributed by BJ, 24-Nov-2023.) |
⊢ (∀𝑥STAB 𝜑 → STAB ∀𝑥𝜑) | ||
24-Nov-2023 | bj-stand 14156 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 14155. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 14155 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → STAB 𝜓) & ⊢ (𝜑 → STAB 𝜒) ⇒ ⊢ (𝜑 → STAB (𝜓 ∧ 𝜒)) | ||
24-Nov-2023 | bj-stan 14155 | The conjunction of two stable formulas is stable. See bj-stim 14154 for implication, stabnot 833 for negation, and bj-stal 14157 for universal quantification. (Contributed by BJ, 24-Nov-2023.) |
⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) | ||
24-Nov-2023 | bj-stim 14154 | A conjunction with a stable consequent is stable. See stabnot 833 for negation , bj-stan 14155 for conjunction , and bj-stal 14157 for universal quantification. (Contributed by BJ, 24-Nov-2023.) |
⊢ (STAB 𝜓 → STAB (𝜑 → 𝜓)) | ||
24-Nov-2023 | bj-nnbist 14152 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 14165). (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | ||
24-Nov-2023 | bj-fast 14149 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ 𝜑 → STAB 𝜑) | ||
24-Nov-2023 | bj-trst 14147 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) |
⊢ (𝜑 → STAB 𝜑) | ||
24-Nov-2023 | bj-nnan 14144 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | ||
24-Nov-2023 | bj-nnim 14143 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ ¬ (𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
24-Nov-2023 | bj-nnsn 14141 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) |
⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓)) | ||
24-Nov-2023 | nnal 1649 | The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) | ||
22-Nov-2023 | ofvalg 6086 | Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) | ||
21-Nov-2023 | exmidac 7202 | The axiom of choice implies excluded middle. See acexmid 5868 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ (CHOICE → EXMID) | ||
21-Nov-2023 | exmidaclem 7201 | Lemma for exmidac 7202. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (CHOICE → EXMID) | ||
21-Nov-2023 | exmid1dc 4197 | A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4190 or ordtriexmid 4517. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
20-Nov-2023 | acfun 7200 | A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
⊢ (𝜑 → CHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
18-Nov-2023 | condc 853 |
Contraposition of a decidable proposition.
This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky". This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning. (Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | ||
18-Nov-2023 | stdcn 847 | A formula is stable if and only if the decidability of its negation implies its decidability. Note that the right-hand side of this biconditional is the converse of dcn 842. (Contributed by BJ, 18-Nov-2023.) |
⊢ (STAB 𝜑 ↔ (DECID ¬ 𝜑 → DECID 𝜑)) | ||
17-Nov-2023 | cnplimclemr 13805 | Lemma for cnplimccntop 13806. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.) |
⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | ||
17-Nov-2023 | cnplimclemle 13804 | Lemma for cnplimccntop 13806. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.) |
⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑍 # 𝐵 ∧ (abs‘(𝑍 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2)) & ⊢ (𝜑 → (abs‘(𝑍 − 𝐵)) < 𝐷) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) | ||
14-Nov-2023 | limccnp2cntop 13813 | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑌 ⊆ ℂ) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) ⇒ ⊢ (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵)) | ||
10-Nov-2023 | rpmaxcl 11216 | The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+) | ||
9-Nov-2023 | limccnp2lem 13812 | Lemma for limccnp2cntop 13813. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑌 ⊆ ℂ) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑟 ∈ 𝑋 ∀𝑠 ∈ 𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸)) & ⊢ (𝜑 → 𝐹 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐹) → (abs‘(𝑅 − 𝐶)) < 𝐿)) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐺) → (abs‘(𝑆 − 𝐷)) < 𝐿)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) | ||
4-Nov-2023 | ellimc3apf 13796 | Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ Ⅎ𝑧𝐹 ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) | ||
3-Nov-2023 | limcmpted 13799 | Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘(𝐷 − 𝐶)) < 𝑥)))) | ||
1-Nov-2023 | unct 12426 | The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.) |
⊢ ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→((𝐴 ∪ 𝐵) ⊔ 1o)) | ||
31-Oct-2023 | ctiunct 12424 |
A sequence of enumerations gives an enumeration of the union. We refer
to "sequence of enumerations" rather than "countably many
countable
sets" because the hypothesis provides more than countability for
each
𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥)
which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.
For "countably many countable sets" the key hypothesis would be (𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12428 (which uses countable choice) although that is for a countably infinite collection not any countable collection. Compare with the case of two sets instead of countably many, as seen at unct 12426, which says that the union of two countable sets is countable . The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12379) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of ∪ 𝑥 ∈ 𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7104 and ctssdc 7106. (Contributed by Jim Kingdon, 31-Oct-2023.) |
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | ||
30-Oct-2023 | ctssdccl 7104 | A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7106 but expressed in terms of classes rather than ∃. (Contributed by Jim Kingdon, 30-Oct-2023.) |
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ 𝑆 = {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} & ⊢ 𝐺 = (◡inl ∘ 𝐹) ⇒ ⊢ (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆)) | ||
28-Oct-2023 | ctiunctlemfo 12423 | Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) & ⊢ Ⅎ𝑥𝐻 & ⊢ Ⅎ𝑥𝑈 ⇒ ⊢ (𝜑 → 𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵) | ||
28-Oct-2023 | ctiunctlemf 12422 | Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) ⇒ ⊢ (𝜑 → 𝐻:𝑈⟶∪ 𝑥 ∈ 𝐴 𝐵) | ||
28-Oct-2023 | ctiunctlemudc 12421 | Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑈) | ||
28-Oct-2023 | ctiunctlemuom 12420 | Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⇒ ⊢ (𝜑 → 𝑈 ⊆ ω) | ||
28-Oct-2023 | ctiunctlemu2nd 12419 | Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ (𝜑 → 𝑁 ∈ 𝑈) ⇒ ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) | ||
28-Oct-2023 | ctiunctlemu1st 12418 | Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ (𝜑 → 𝑁 ∈ 𝑈) ⇒ ⊢ (𝜑 → (1st ‘(𝐽‘𝑁)) ∈ 𝑆) | ||
28-Oct-2023 | pm2.521gdc 868 | A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.) |
⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (𝜒 → 𝜑))) | ||
28-Oct-2023 | stdcndc 845 | A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.) |
⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) | ||
28-Oct-2023 | conax1k 654 | Weakening of conax1 653. General instance of pm2.51 655 and of pm2.52 656. (Contributed by BJ, 28-Oct-2023.) |
⊢ (¬ (𝜑 → 𝜓) → (𝜒 → ¬ 𝜓)) | ||
28-Oct-2023 | conax1 653 | Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.) |
⊢ (¬ (𝜑 → 𝜓) → ¬ 𝜓) | ||
25-Oct-2023 | divcnap 13722 | Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐾 = (𝐽 ↾t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ⇒ ⊢ (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) | ||
23-Oct-2023 | cnm 7822 | A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) | ||
23-Oct-2023 | oprssdmm 6166 | Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ∃𝑣 𝑣 ∈ 𝑢) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ (𝜑 → Rel 𝐹) ⇒ ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹) | ||
22-Oct-2023 | addcncntoplem 13718 | Lemma for addcncntop 13719, subcncntop 13720, and mulcncntop 13721. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) & ⊢ + :(ℂ × ℂ)⟶ℂ & ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
22-Oct-2023 | txmetcnp 13685 | Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) | ||
22-Oct-2023 | xmetxpbl 13675 | The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.) |
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝑋 × 𝑌)) ⇒ ⊢ (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st ‘𝐶)(ball‘𝑀)𝑅) × ((2nd ‘𝐶)(ball‘𝑁)𝑅))) | ||
15-Oct-2023 | xmettxlem 13676 | Lemma for xmettx 13677. (Contributed by Jim Kingdon, 15-Oct-2023.) |
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃) ⇒ ⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) | ||
11-Oct-2023 | xmettx 13677 | The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.) |
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃) ⇒ ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) | ||
11-Oct-2023 | xmetxp 13674 | The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.) |
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) | ||
7-Oct-2023 | df-iress 12453 |
Define a multifunction restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range,
defining a function using the base set and applying that, or explicitly
truncating the slot before use.
(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.) (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.) |
⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | ||
29-Sep-2023 | syl2anc2 412 | Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
12-Sep-2023 | pwntru 4196 | A slight strengthening of pwtrufal 14403. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.) |
⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) | ||
11-Sep-2023 | pwtrufal 14403 | A subset of the singleton {∅} cannot be anything other than ∅ or {∅}. Removing the double negation would change the meaning, as seen at exmid01 4195. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4193), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.) |
⊢ (𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅})) | ||
9-Sep-2023 | mathbox 14140 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
6-Sep-2023 | djuexb 7037 | The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) | ||
3-Sep-2023 | pwf1oexmid 14405 | An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2o ∧ EXMID))) | ||
3-Sep-2023 | pwle2 14404 | An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆ 2o) | ||
30-Aug-2023 | isomninn 14435 | Omniscience stated in terms of natural numbers. Similar to isomnimap 7129 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
30-Aug-2023 | isomninnlem 14434 | Lemma for isomninn 14435. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
28-Aug-2023 | trilpolemisumle 14442 | Lemma for trilpo 14447. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑍 ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ 𝑍 (1 / (2↑𝑖))) | ||
25-Aug-2023 | cvgcmp2n 14437 | A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
25-Aug-2023 | cvgcmp2nlemabs 14436 | Lemma for cvgcmp2n 14437. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) | ||
24-Aug-2023 | trilpolemclim 14440 | Lemma for trilpo 14447. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
23-Aug-2023 | trilpo 14447 |
Real number trichotomy implies the Limited Principle of Omniscience
(LPO). We expect that we'd need some form of countable choice to prove
the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 14445 (which means the sequence contains a zero), trilpolemeq1 14444 (which means the sequence is all ones), and trilpolemgt1 14443 (which is not possible). Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 14433) or that the real numbers are a discrete field (see trirec0 14448). LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10229 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ω ∈ Omni) | ||
23-Aug-2023 | trilpolemres 14446 | Lemma for trilpo 14447. The result. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
23-Aug-2023 | trilpolemlt1 14445 | Lemma for trilpo 14447. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7132 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) | ||
23-Aug-2023 | trilpolemeq1 14444 | Lemma for trilpo 14447. The 𝐴 = 1 case. This is proved by noting that if any (𝐹‘𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 = 1) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) | ||
23-Aug-2023 | trilpolemgt1 14443 | Lemma for trilpo 14447. The 1 < 𝐴 case. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → ¬ 1 < 𝐴) | ||
23-Aug-2023 | trilpolemcl 14441 | Lemma for trilpo 14447. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
23-Aug-2023 | triap 14433 | Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵)) | ||
19-Aug-2023 | djuenun 7205 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
16-Aug-2023 | ctssdclemr 7105 | Lemma for ctssdc 7106. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.) |
⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) | ||
16-Aug-2023 | ctssdclemn0 7103 | Lemma for ctssdc 7106. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ (𝜑 → ¬ ∅ ∈ 𝑆) ⇒ ⊢ (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
15-Aug-2023 | ctssexmid 7142 | The decidability condition in ctssdc 7106 is needed. More specifically, ctssdc 7106 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
⊢ ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) & ⊢ ω ∈ Omni ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
15-Aug-2023 | ctssdc 7106 | A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7142. (Contributed by Jim Kingdon, 15-Aug-2023.) |
⊢ (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
14-Aug-2023 | mpoexw 6208 | Weak version of mpoex 6209 that holds without ax-coll 4115. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
13-Aug-2023 | grpinvfvalg 12805 | The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) | ||
13-Aug-2023 | ltntri 8075 | Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy, 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) | ||
13-Aug-2023 | mptexw 6108 | Weak version of mptex 5738 that holds without ax-coll 4115. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
13-Aug-2023 | funexw 6107 | Weak version of funex 5735 that holds without ax-coll 4115. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) | ||
11-Aug-2023 | qnnen 12415 | The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.) |
⊢ ℚ ≈ ℕ | ||
10-Aug-2023 | ctinfomlemom 12411 | Lemma for ctinfom 12412. Converting between ω and ℕ0. (Contributed by Jim Kingdon, 10-Aug-2023.) |
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐺 = (𝐹 ∘ ◡𝑁) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛)) ⇒ ⊢ (𝜑 → (𝐺:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖))) | ||
9-Aug-2023 | difinfsnlem 7092 | Lemma for difinfsn 7093. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(ω ⊔ 1o)–1-1→𝐴) & ⊢ (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛)))) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1→(𝐴 ∖ {𝐵})) | ||
8-Aug-2023 | difinfinf 7094 | An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | ||
8-Aug-2023 | difinfsn 7093 | An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴) → ω ≼ (𝐴 ∖ {𝐵})) | ||
7-Aug-2023 | ctinf 12414 | A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.) |
⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) | ||
7-Aug-2023 | inffinp1 12413 | An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → ω ≼ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
7-Aug-2023 | ctinfom 12412 | A condition for a set being countably infinite. Restates ennnfone 12409 in terms of ω and function image. Like ennnfone 12409 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.) |
⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) | ||
6-Aug-2023 | rerestcntop 13717 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
6-Aug-2023 | tgioo2cntop 13716 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) | ||
4-Aug-2023 | nninffeq 14425 | Equality of two functions on ℕ∞ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, ⊢ (𝜑 → ∀𝑛 ∈ suc ω...). (Contributed by Jim Kingdon, 4-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ∞⟶ℕ0) & ⊢ (𝜑 → 𝐺:ℕ∞⟶ℕ0) & ⊢ (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o))) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
3-Aug-2023 | txvalex 13421 | Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 13427. (Contributed by Jim Kingdon, 3-Aug-2023.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) | ||
3-Aug-2023 | ablgrpd 12921 | An Abelian group is a group, deduction form of ablgrp 12920. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
3-Aug-2023 | mulgcld 12893 | Deduction associated with mulgcl 12889. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
3-Aug-2023 | hashfingrpnn 12799 | A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) | ||
3-Aug-2023 | hashfinmndnn 12725 | A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) | ||
3-Aug-2023 | dvdsgcdidd 11978 | The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) | ||
3-Aug-2023 | gcdmultipled 11977 | The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀) | ||
3-Aug-2023 | fihashelne0d 10761 | A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ (♯‘𝐴) = 0) | ||
3-Aug-2023 | phpeqd 6926 | Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6859 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
3-Aug-2023 | enpr2d 6811 | A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
3-Aug-2023 | elrnmpt2d 4878 | Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | ||
3-Aug-2023 | elrnmptdv 4877 | Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
3-Aug-2023 | rspcime 2848 | Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
3-Aug-2023 | neqcomd 2182 | Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 = 𝐴) | ||
2-Aug-2023 | dvid 13829 | Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) | ||
2-Aug-2023 | dvconst 13828 | Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | ||
2-Aug-2023 | dvidlemap 13827 | Lemma for dvid 13829 and dvconst 13828. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) | ||
2-Aug-2023 | diveqap1bd 8782 | If two complex numbers are equal, their quotient is one. One-way deduction form of diveqap1 8651. Converse of diveqap1d 8744. (Contributed by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = 1) | ||
31-Jul-2023 | mul0inf 11233 | Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11055 and mulap0bd 8603 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) | ||
31-Jul-2023 | mul0eqap 8616 | If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) | ||
31-Jul-2023 | apcon4bid 8571 | Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
30-Jul-2023 | uzennn 10422 | An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ≈ ℕ) | ||
30-Jul-2023 | djuen 7204 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | ||
30-Jul-2023 | endjudisj 7203 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
30-Jul-2023 | eninr 7091 | Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) | ||
30-Jul-2023 | eninl 7090 | Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) | ||
29-Jul-2023 | exmidunben 12410 | If any unbounded set of positive integers is equinumerous to ℕ, then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.) |
⊢ ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID) | ||
29-Jul-2023 | exmidsssnc 4200 | Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4195 but lets you choose any set as the element of the singleton rather than just ∅. It is similar to exmidsssn 4199 but for a particular set 𝐵 rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.) |
⊢ (𝐵 ∈ 𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) | ||
28-Jul-2023 | dvfcnpm 13826 | The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.) |
⊢ (𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) | ||
28-Jul-2023 | dvfpm 13825 | The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.) |
⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) | ||
23-Jul-2023 | ennnfonelemhdmp1 12393 | Lemma for ennnfone 12409. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) ⇒ ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) | ||
23-Jul-2023 | ennnfonelemp1 12390 | Lemma for ennnfone 12409. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) | ||
22-Jul-2023 | nntr2 6498 | Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.) |
⊢ ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
22-Jul-2023 | nnsssuc 6497 | A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
21-Jul-2023 | ennnfoneleminc 12395 | Lemma for ennnfone 12409. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → 𝑄 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ≤ 𝑄) ⇒ ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑄)) | ||
20-Jul-2023 | ennnfonelemg 12387 | Lemma for ennnfone 12409. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | ||
20-Jul-2023 | ennnfonelemjn 12386 | Lemma for ennnfone 12409. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) | ||
20-Jul-2023 | ennnfonelemj0 12385 | Lemma for ennnfone 12409. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | ||
20-Jul-2023 | seqp1cd 10452 | Value of the sequence builder function at a successor. A version of seq3p1 10448 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
20-Jul-2023 | seqovcd 10449 | A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10450 and seq1cd 10451 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) | ||
19-Jul-2023 | ennnfonelemhom 12399 | Lemma for ennnfone 12409. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑀 ∈ ω) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖)) | ||
19-Jul-2023 | ennnfonelemex 12398 | Lemma for ennnfone 12409. Extending the sequence (𝐻‘𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖)) | ||
19-Jul-2023 | ennnfonelemkh 12396 | Lemma for ennnfone 12409. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝐻‘𝑃) ⊆ (◡𝑁‘𝑃)) | ||
19-Jul-2023 | ennnfonelemom 12392 | Lemma for ennnfone 12409. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝐻‘𝑃) ∈ ω) | ||
19-Jul-2023 | ennnfonelem1 12391 | Lemma for ennnfone 12409. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐻‘1) = {〈∅, (𝐹‘∅)〉}) | ||
19-Jul-2023 | seq1cd 10451 | Initial value of the recursive sequence builder. A version of seq3-1 10446 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
17-Jul-2023 | ennnfonelemhf1o 12397 | Lemma for ennnfone 12409. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃))) | ||
16-Jul-2023 | ennnfonelemen 12405 | Lemma for ennnfone 12409. The result. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
16-Jul-2023 | ennnfonelemdm 12404 | Lemma for ennnfone 12409. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → dom 𝐿 = ω) | ||
16-Jul-2023 | ennnfonelemrn 12403 | Lemma for ennnfone 12409. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → ran 𝐿 = 𝐴) | ||
16-Jul-2023 | ennnfonelemf1 12402 | Lemma for ennnfone 12409. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) | ||
16-Jul-2023 | ennnfonelemfun 12401 | Lemma for ennnfone 12409. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → Fun 𝐿) | ||
16-Jul-2023 | ennnfonelemrnh 12400 | Lemma for ennnfone 12409. A consequence of ennnfonelemss 12394. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐻) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐻) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋)) | ||
15-Jul-2023 | ennnfonelemss 12394 | Lemma for ennnfone 12409. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | ||
15-Jul-2023 | ennnfonelem0 12389 | Lemma for ennnfone 12409. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐻‘0) = ∅) | ||
15-Jul-2023 | ennnfonelemk 12384 | Lemma for ennnfone 12409. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝐾) | ||
15-Jul-2023 | ennnfonelemdc 12383 | Lemma for ennnfone 12409. A direct consequence of fidcenumlemrk 6947. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → 𝑃 ∈ ω) ⇒ ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) | ||
14-Jul-2023 | djur 7062 | A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) | ||
13-Jul-2023 | sbthomlem 14429 | Lemma for sbthom 14430. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
⊢ (𝜑 → ω ∈ Omni) & ⊢ (𝜑 → 𝑌 ⊆ {∅}) & ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) ⇒ ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) | ||
12-Jul-2023 | caseinr 7085 | Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺‘𝐴)) | ||
12-Jul-2023 | inl11 7058 | Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) | ||
11-Jul-2023 | djudomr 7213 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | ||
11-Jul-2023 | djudoml 7212 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | ||
11-Jul-2023 | omp1eomlem 7087 | Lemma for omp1eom 7088. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥) & ⊢ 𝐺 = case(𝑆, ( I ↾ 1o)) ⇒ ⊢ 𝐹:ω–1-1-onto→(ω ⊔ 1o) | ||
11-Jul-2023 | xp01disjl 6429 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ | ||
10-Jul-2023 | sbthom 14430 | Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 14428 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.) |
⊢ ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID) | ||
10-Jul-2023 | endjusym 7089 | Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
10-Jul-2023 | omp1eom 7088 | Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
⊢ (ω ⊔ 1o) ≈ ω | ||
9-Jul-2023 | refeq 14432 | Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
9-Jul-2023 | seqvalcd 10445 | Value of the sequence builder function. Similar to seq3val 10444 but the classes 𝐷 (type of each term) and 𝐶 (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) & ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) | ||
9-Jul-2023 | djuun 7060 | The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.) |
⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | ||
9-Jul-2023 | djuin 7057 | The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.) |
⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | ||
8-Jul-2023 | limcimo 13801 | Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | ||
8-Jul-2023 | ennnfonelemh 12388 | Lemma for ennnfone 12409. (Contributed by Jim Kingdon, 8-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) | ||
7-Jul-2023 | seqf2 10450 | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) | ||
3-Jul-2023 | limcimolemlt 13800 | Lemma for limcimo 13801. (Contributed by Jim Kingdon, 3-Jul-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑧) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2))) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) → (abs‘((𝐹‘𝑤) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2))) ⇒ ⊢ (𝜑 → (abs‘(𝑋 − 𝑌)) < (abs‘(𝑋 − 𝑌))) | ||
28-Jun-2023 | dvfgg 13824 | Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and ℂ. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | ||
28-Jun-2023 | dvbsssg 13822 | The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆) | ||
27-Jun-2023 | dvbssntrcntop 13820 | The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) | ||
27-Jun-2023 | eldvap 13818 | The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) | ||
27-Jun-2023 | dvfvalap 13817 | Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) | ||
27-Jun-2023 | dvlemap 13816 | Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) | ||
25-Jun-2023 | reldvg 13815 | The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹)) | ||
25-Jun-2023 | df-dvap 13793 | Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of ℂ and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.) |
⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | ||
18-Jun-2023 | limccnpcntop 13811 | If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐷) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝐺 ∘ 𝐹) limℂ 𝐵)) | ||
18-Jun-2023 | r19.30dc 2624 | Restricted quantifier version of 19.30dc 1627. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
17-Jun-2023 | r19.28v 2605 | Restricted quantifier version of one direction of 19.28 1563. (The other direction holds when 𝐴 is inhabited, see r19.28mv 3515.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
17-Jun-2023 | r19.27v 2604 | Restricted quantitifer version of one direction of 19.27 1561. (The other direction holds when 𝐴 is inhabited, see r19.27mv 3519.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
16-Jun-2023 | cnlimcim 13807 | If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.) |
⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | ||
16-Jun-2023 | cncfcn1cntop 13748 | Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (ℂ–cn→ℂ) = (𝐽 Cn 𝐽) | ||
14-Jun-2023 | cnplimcim 13803 | If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.) |
⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | ||
14-Jun-2023 | metcnpd 13687 | Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by Jim Kingdon, 14-Jun-2023.) |
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐶)) & ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) | ||
6-Jun-2023 | cntoptop 13700 | The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ 𝐽 ∈ Top | ||
6-Jun-2023 | cntoptopon 13699 | The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.) |
⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
3-Jun-2023 | limcdifap 13798 | It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵}) limℂ 𝐵)) | ||
3-Jun-2023 | ellimc3ap 13797 | Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) | ||
3-Jun-2023 | df-limced 13792 | Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.) |
⊢ limℂ = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) | ||
30-May-2023 | modprm1div 12230 | A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) | ||
30-May-2023 | modm1div 11791 | An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1))) | ||
30-May-2023 | eluz4nn 9557 | An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ ℕ) | ||
30-May-2023 | eluz4eluz2 9556 | An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ (ℤ≥‘2)) | ||
29-May-2023 | mulcncflem 13757 | Lemma for mulcncf 13758. (Contributed by Jim Kingdon, 29-May-2023.) |
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐹 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | ||
26-May-2023 | cdivcncfap 13754 | Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.) |
⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) | ||
26-May-2023 | reccn2ap 11305 | The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2177. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.) |
⊢ 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) | ||
23-May-2023 | iooretopg 13695 | Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ (topGen‘ran (,))) | ||
23-May-2023 | minclpr 11229 | The minimum of two real numbers is one of those numbers if and only if dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be combined with zletric 9286 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) | ||
22-May-2023 | qtopbasss 13688 | The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.) |
⊢ 𝑆 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) ⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases | ||
22-May-2023 | iooinsup 11269 | Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < ))) | ||
21-May-2023 | df-sumdc 11346 | Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐵 to be defined where 𝑘 ∈ 𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11514). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.) |
⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) | ||
19-May-2023 | bdmopn 13671 | The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐶) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷)) | ||
19-May-2023 | bdbl 13670 | The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) | ||
19-May-2023 | bdmet 13669 | The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) | ||
19-May-2023 | xrminltinf 11264 | Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐴))) | ||
19-May-2023 | clel5 2874 | Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.) |
⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) | ||
18-May-2023 | xrminrecl 11265 | The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < )) | ||
18-May-2023 | ralnex2 2616 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
17-May-2023 | bdtrilem 11231 | Lemma for bdtri 11232. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) | ||
15-May-2023 | xrbdtri 11268 | Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < ))) | ||
15-May-2023 | bdtri 11232 | Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < ))) | ||
15-May-2023 | minabs 11228 | The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) | ||
11-May-2023 | xrmaxadd 11253 | Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < ))) | ||
11-May-2023 | xrmaxaddlem 11252 | Lemma for xrmaxadd 11253. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < ))) | ||
10-May-2023 | xrminadd 11267 | Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < ))) | ||
10-May-2023 | xrmaxlesup 11251 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
10-May-2023 | xrltmaxsup 11249 | The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔ (𝐶 < 𝐴 ∨ 𝐶 < 𝐵))) | ||
9-May-2023 | bdxmet 13668 | The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | ||
9-May-2023 | bdmetval 13667 | Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) ⇒ ⊢ (((𝐶:(𝑋 × 𝑋)⟶ℝ* ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = inf({(𝐴𝐶𝐵), 𝑅}, ℝ*, < )) | ||
7-May-2023 | setsmstsetg 13648 | The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) | ||
6-May-2023 | dsslid 12627 | Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.) |
⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | ||
5-May-2023 | mopnrel 13608 | The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.) |
⊢ Rel MetOpen | ||
5-May-2023 | fsumsersdc 11387 | Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) | ||
4-May-2023 | blex 13554 | A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) | ||
4-May-2023 | summodc 11375 | A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) | ||
4-May-2023 | summodclem2 11374 | Lemma for summodc 11375. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) | ||
4-May-2023 | xrminrpcl 11266 | The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+) | ||
4-May-2023 | xrlemininf 11263 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
3-May-2023 | xrltmininf 11262 | Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
3-May-2023 | xrmineqinf 11261 | The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵) | ||
3-May-2023 | xrmin2inf 11260 | The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐵) | ||
3-May-2023 | xrmin1inf 11259 | The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐴) | ||
3-May-2023 | xrmincl 11258 | The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*) | ||
2-May-2023 | xrminmax 11257 | Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) | ||
2-May-2023 | xrnegcon1d 11256 | Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴)) | ||
2-May-2023 | infxrnegsupex 11255 | The infimum of a set of extended reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.) |
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < )) | ||
2-May-2023 | xrnegiso 11254 | Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.) |
⊢ 𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ*, ℝ*) ∧ ◡𝐹 = 𝐹) | ||
30-Apr-2023 | xrmaxltsup 11250 | Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
30-Apr-2023 | xrmaxrecl 11247 | The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < )) | ||
30-Apr-2023 | xrmax2sup 11246 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < )) | ||
30-Apr-2023 | xrmax1sup 11245 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < )) | ||
29-Apr-2023 | xrmaxcl 11244 | The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*) | ||
29-Apr-2023 | xrmaxiflemval 11242 | Lemma for xrmaxif 11243. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.) |
⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) | ||
29-Apr-2023 | xrmaxiflemcom 11241 | Lemma for xrmaxif 11243. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) | ||
29-Apr-2023 | xrmaxiflemcl 11237 | Lemma for xrmaxif 11243. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*) | ||
29-Apr-2023 | sbco2v 1948 | Version of sbco2 1965 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
28-Apr-2023 | xrmaxiflemlub 11240 | Lemma for xrmaxif 11243. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 28-Apr-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) | ||
26-Apr-2023 | xrmaxif 11243 | Maximum of two extended reals in terms of if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) | ||
26-Apr-2023 | xrmaxiflemab 11239 | Lemma for xrmaxif 11243. A variation of xrmaxleim 11236- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) | ||
26-Apr-2023 | xrmaxifle 11238 | An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) | ||
25-Apr-2023 | xrmaxleim 11236 | Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)) | ||
25-Apr-2023 | rpmincl 11230 | The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+) | ||
25-Apr-2023 | mincl 11223 | The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ) | ||
24-Apr-2023 | psmetrel 13489 | The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.) |
⊢ Rel PsMet | ||
23-Apr-2023 | bcval5 10727 | Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁 − 𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁 − 𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾))) | ||
23-Apr-2023 | ser3le 10504 | Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | ||
23-Apr-2023 | seq3z 10497 | If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑍) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝑍) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | ||
23-Apr-2023 | seq3caopr 10469 | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
23-Apr-2023 | seq3caopr2 10468 | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
22-Apr-2023 | ser3sub 10492 | The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁))) | ||
22-Apr-2023 | seq3caopr3 10467 | Lemma for seq3caopr2 10468. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
22-Apr-2023 | ser3mono 10464 | The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
21-Apr-2023 | metrtri 13544 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | ||
21-Apr-2023 | sqxpeq0 5048 | A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.) |
⊢ ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅) | ||
20-Apr-2023 | xmetrel 13510 | The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
⊢ Rel ∞Met | ||
20-Apr-2023 | metrel 13509 | The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
⊢ Rel Met | ||
19-Apr-2023 | psmetge0 13498 | The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
18-Apr-2023 | xleaddadd 9874 | Cancelling a factor of two in ≤ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))) | ||
17-Apr-2023 | xposdif 9869 | Extended real version of posdif 8402. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) | ||
17-Apr-2023 | nmnfgt 9805 | An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) | ||
17-Apr-2023 | npnflt 9802 | An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) | ||
16-Apr-2023 | xltadd1 9863 | Extended real version of ltadd1 8376. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) | ||
13-Apr-2023 | xrmnfdc 9830 | An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) | ||
13-Apr-2023 | xrpnfdc 9829 | An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) | ||
11-Apr-2023 | dmxpid 4844 | The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.) |
⊢ dom (𝐴 × 𝐴) = 𝐴 | ||
9-Apr-2023 | isumz 11381 | Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) | ||
9-Apr-2023 | summodclem2a 11373 | Lemma for summodc 11375. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁)) | ||
9-Apr-2023 | summodclem3 11372 | Lemma for summodc 11375. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) | ||
9-Apr-2023 | sumrbdc 11371 | Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) | ||
9-Apr-2023 | seq3coll 10806 | The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 2-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1)) → (𝐻‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) | ||
8-Apr-2023 | zsumdc 11376 | Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 DECID 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) | ||
8-Apr-2023 | sumrbdclem 11369 | Lemma for sumrbdc 11371. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) | ||
8-Apr-2023 | isermulc2 11332 | Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) | ||
8-Apr-2023 | seq3id 10494 | Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) | ||
8-Apr-2023 | seq3id3 10493 | A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | ||
7-Apr-2023 | seq3shft2 10459 | Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
7-Apr-2023 | seq3feq 10458 | Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
7-Apr-2023 | r19.2m 3509 | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1638). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.) |
⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
6-Apr-2023 | lmtopcnp 13417 | The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) | ||
6-Apr-2023 | cnptoprest2 13407 | Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) | ||
5-Apr-2023 | cnptoprest 13406 | Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) | ||
4-Apr-2023 | exmidmp 7149 | Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.) |
⊢ (EXMID → ω ∈ Markov) | ||
2-Apr-2023 | sup3exmid 8903 | If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.) |
⊢ ((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤 ∈ 𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑢 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝑢 𝑦 < 𝑧))) ⇒ ⊢ DECID 𝜑 | ||
31-Mar-2023 | cnptopresti 13405 | One direction of cnptoprest 13406 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 31-Mar-2023.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) | ||
30-Mar-2023 | cncnp2m 13398 | A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | ||
29-Mar-2023 | exmidlpo 7135 | Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
⊢ (EXMID → ω ∈ Omni) | ||
28-Mar-2023 | icnpimaex 13378 | Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) | ||
28-Mar-2023 | cnpf2 13374 | A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) | ||
28-Mar-2023 | cnprcl2k 13373 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) | ||
27-Mar-2023 | mptrcl 5594 | Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) | ||
25-Mar-2023 | lmreltop 13360 | The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) | ||
25-Mar-2023 | fodjumkv 7152 | A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
25-Mar-2023 | fodjumkvlemres 7151 | Lemma for fodjumkv 7152. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
25-Mar-2023 | fodju0 7139 | Lemma for fodjuomni 7141 and fodjumkv 7152. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
25-Mar-2023 | fodjum 7138 | Lemma for fodjuomni 7141 and fodjumkv 7152. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
25-Mar-2023 | fodjuf 7137 | Lemma for fodjuomni 7141 and fodjumkv 7152. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) | ||
23-Mar-2023 | restrcl 13334 | Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.) |
⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | ||
22-Mar-2023 | neipsm 13321 | A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) | ||
19-Mar-2023 | mkvprop 7150 | Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.) |
⊢ ((𝐴 ∈ Markov ∧ ∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) | ||
18-Mar-2023 | omnimkv 7148 | An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | ||
18-Mar-2023 | ismkvmap 7146 | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | ||
18-Mar-2023 | ismkv 7145 | The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | ||
18-Mar-2023 | df-markov 7144 |
A Markov set is one where if a predicate (here represented by a function
𝑓) on that set does not hold (where
hold means is equal to 1o)
for all elements, then there exists an element where it fails (is equal
to ∅). Generalization of definition 2.5
of [Pierik], p. 9.
In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} | ||
17-Mar-2023 | finct 7109 | A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.) |
⊢ (𝐴 ∈ Fin → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
16-Mar-2023 | ctmlemr 7101 | Lemma for ctm 7102. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))) | ||
15-Mar-2023 | caseinl 7084 | Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.) |
⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹‘𝐴)) | ||
13-Mar-2023 | enumct 7108 | A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as ∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as ∃𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
⊢ (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
13-Mar-2023 | enumctlemm 7107 | Lemma for enumct 7108. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∅ ∈ 𝑁) & ⊢ 𝐺 = (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑁, (𝐹‘𝑘), (𝐹‘∅))) ⇒ ⊢ (𝜑 → 𝐺:ω–onto→𝐴) | ||
13-Mar-2023 | ctm 7102 | Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝐴)) | ||
13-Mar-2023 | 0ct 7100 | The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) |
⊢ ∃𝑓 𝑓:ω–onto→(∅ ⊔ 1o) | ||
13-Mar-2023 | ctex 6747 | A class dominated by ω is a set. See also ctfoex 7111 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | ||
12-Mar-2023 | cls0 13300 | The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.) |
⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅) | ||
12-Mar-2023 | algrp1 12029 | The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) | ||
12-Mar-2023 | ialgr0 12027 | The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) | ||
11-Mar-2023 | ntreq0 13299 | Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) | ||
11-Mar-2023 | clstop 13294 | The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋) | ||
11-Mar-2023 | ntrss 13286 | Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) | ||
10-Mar-2023 | iuncld 13282 | A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
5-Mar-2023 | 2basgeng 13249 | Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) | ||
5-Mar-2023 | exmidsssn 4199 | Excluded middle is equivalent to the biconditionalized version of sssnr 3751 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.) |
⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) | ||
5-Mar-2023 | exmidn0m 4198 | Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.) |
⊢ (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) | ||
4-Mar-2023 | eltg3 13224 | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | ||
4-Mar-2023 | tgvalex 13217 | The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) | ||
4-Mar-2023 | biadanii 613 | Inference associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | ||
4-Mar-2023 | biadani 612 | An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
16-Feb-2023 | ixp0 6725 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.) |
⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) | ||
16-Feb-2023 | ixpm 6724 | If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.) |
⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | ||
16-Feb-2023 | exmidundifim 4204 | Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4203 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | ||
15-Feb-2023 | ixpintm 6719 | The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) | ||
15-Feb-2023 | ixpiinm 6718 | The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) | ||
15-Feb-2023 | ixpexgg 6716 | The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.) |
⊢ ((𝐴 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
15-Feb-2023 | nfixpxy 6711 | Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 | ||
13-Feb-2023 | topnpropgd 12650 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
12-Feb-2023 | slotex 12472 | Existence of slot value. A corollary of slotslfn 12471. (Contributed by Jim Kingdon, 12-Feb-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) | ||
11-Feb-2023 | topnvalg 12648 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) | ||
10-Feb-2023 | slotslfn 12471 | A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ 𝐸 Fn V | ||
9-Feb-2023 | pleslid 12624 | Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | ||
9-Feb-2023 | topgrptsetd 12621 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) | ||
9-Feb-2023 | topgrpplusgd 12620 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + = (+g‘𝑊)) | ||
9-Feb-2023 | topgrpbasd 12619 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | ||
9-Feb-2023 | topgrpstrd 12618 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) | ||
9-Feb-2023 | tsetslid 12610 | Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.) |
⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | ||
8-Feb-2023 | ipsipd 12607 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 = (·𝑖‘𝐴)) | ||
8-Feb-2023 | ipsvscad 12606 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = ( ·𝑠 ‘𝐴)) | ||
8-Feb-2023 | ipsscad 12605 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) | ||
7-Feb-2023 | ipsmulrd 12604 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × = (.r‘𝐴)) | ||
7-Feb-2023 | ipsaddgd 12603 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + = (+g‘𝐴)) | ||
7-Feb-2023 | ipsbased 12602 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) | ||
7-Feb-2023 | ipsstrd 12601 | A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) | ||
7-Feb-2023 | ipslid 12600 | Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.) |
⊢ (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ) | ||
7-Feb-2023 | lmodvscad 12597 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) | ||
6-Feb-2023 | lmodscad 12596 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) | ||
6-Feb-2023 | lmodplusgd 12595 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → + = (+g‘𝑊)) | ||
6-Feb-2023 | lmodbased 12594 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | ||
5-Feb-2023 | lmodstrd 12593 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) | ||
5-Feb-2023 | vscaslid 12592 | Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | ||
5-Feb-2023 | scaslid 12586 | Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | ||
5-Feb-2023 | srngplusgd 12581 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
5-Feb-2023 | srngbased 12580 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | ||
5-Feb-2023 | srngstrd 12579 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) | ||
5-Feb-2023 | opelstrsl 12552 | The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) | ||
4-Feb-2023 | starvslid 12578 | Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.) |
⊢ (*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ) | ||
3-Feb-2023 | rngbaseg 12573 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) | ||
3-Feb-2023 | rngstrg 12572 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) | ||
3-Feb-2023 | mulrslid 12569 | Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | ||
3-Feb-2023 | plusgslid 12551 | Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | ||
2-Feb-2023 | 2strop1g 12561 | The other slot of a constructed two-slot structure. Version of 2stropg 12558 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) | ||
2-Feb-2023 | 2strbas1g 12560 | The base set of a constructed two-slot structure. Version of 2strbasg 12557 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) | ||
2-Feb-2023 | 2strstr1g 12559 | A constructed two-slot structure. Version of 2strstrg 12556 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) | ||
31-Jan-2023 | baseslid 12501 | The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.) |
⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | ||
31-Jan-2023 | strsl0 12493 | All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ ∅ = (𝐸‘∅) | ||
31-Jan-2023 | strslss 12492 | Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.) |
⊢ 𝑇 ∈ V & ⊢ Fun 𝑇 & ⊢ 𝑆 ⊆ 𝑇 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) | ||
31-Jan-2023 | strslssd 12491 | Deduction version of strslss 12492. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑇) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) | ||
30-Jan-2023 | strslfv3 12490 | Variant on strslfv 12489 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ (𝜑 → 𝑈 = 𝑆) & ⊢ 𝑆 Struct 𝑋 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ 𝐴 = (𝐸‘𝑈) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
30-Jan-2023 | strslfv 12489 | Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12451). By virtue of ndxslid 12470, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ 𝑆 Struct 𝑋 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
30-Jan-2023 | strslfv2 12488 | A variation on strslfv 12489 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ 𝑆 ∈ V & ⊢ Fun ◡◡𝑆 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
30-Jan-2023 | strslfv2d 12487 | Deduction version of strslfv 12489. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun ◡◡𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
30-Jan-2023 | strslfvd 12486 | Deduction version of strslfv 12489. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
30-Jan-2023 | strsetsid 12478 | Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) | ||
30-Jan-2023 | funresdfunsndc 6501 | Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.) |
⊢ ((∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) | ||
29-Jan-2023 | ndxslid 12470 | A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12489. (Contributed by Jim Kingdon, 29-Jan-2023.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | ||
29-Jan-2023 | fnsnsplitdc 6500 | Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) | ||
28-Jan-2023 | 2stropg 12558 | The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) | ||
28-Jan-2023 | 2strbasg 12557 | The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) | ||
28-Jan-2023 | 2strstrg 12556 | A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) | ||
28-Jan-2023 | 1strstrg 12554 | A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) | ||
27-Jan-2023 | strle2g 12547 | Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) | ||
27-Jan-2023 | strle1g 12546 | Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | ||
27-Jan-2023 | strleund 12544 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) | ||
24-Jan-2023 | setsslnid 12496 | Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠ 𝐷 & ⊢ 𝐷 ∈ ℕ ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) | ||
24-Jan-2023 | setsslid 12495 | Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝐸‘(𝑊 sSet 〈(𝐸‘ndx), 𝐶〉))) | ||
22-Jan-2023 | setsabsd 12484 | Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) | ||
22-Jan-2023 | setsresg 12483 | The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | ||
22-Jan-2023 | setsex 12477 | Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | ||
22-Jan-2023 | 2zsupmax 11218 | Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
22-Jan-2023 | elpwpwel 4472 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
21-Jan-2023 | funresdfunsnss 5715 | Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in a subset of the function itself. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 21-Jan-2023.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) | ||
20-Jan-2023 | setsvala 12476 | Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | ||
20-Jan-2023 | fnsnsplitss 5711 | Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) | ||
19-Jan-2023 | strfvssn 12467 | A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) | ||
19-Jan-2023 | strnfvn 12466 |
Value of a structure component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 12451) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12489. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
⊢ 𝑆 ∈ V & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) | ||
19-Jan-2023 | strnfvnd 12465 | Deduction version of strnfvn 12466. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) | ||
18-Jan-2023 | isstructr 12460 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) | ||
18-Jan-2023 | isstructim 12459 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | ||
18-Jan-2023 | isstruct2r 12456 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
⊢ (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 Struct 𝑋) | ||
18-Jan-2023 | isstruct2im 12455 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | ||
18-Jan-2023 | sbiev 1792 | Conversion of implicit substitution to explicit substitution. Version of sbie 1791 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
16-Jan-2023 | toponsspwpwg 13187 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) |
⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) | ||
14-Jan-2023 | istopfin 13165 | Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 13164. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.) |
⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥((𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐽))) | ||
14-Jan-2023 | fiintim 6922 |
If a class is closed under pairwise intersections, then it is closed
under nonempty finite intersections. The converse would appear to
require an additional condition, such as 𝑥 and 𝑦 not
being
equal, or 𝐴 having decidable equality.
This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
9-Jan-2023 | divccncfap 13744 | Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.) |
⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
7-Jan-2023 | eap1 11777 | e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.) |
⊢ e # 1 | ||
7-Jan-2023 | eap0 11775 | e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.) |
⊢ e # 0 | ||
7-Jan-2023 | egt2lt3 11771 | Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
⊢ (2 < e ∧ e < 3) | ||
6-Jan-2023 | eirr 11770 | e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 11769. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.) |
⊢ e ∉ ℚ | ||
6-Jan-2023 | eirrap 11769 | e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 11770. (Contributed by Jim Kingdon, 6-Jan-2023.) |
⊢ (𝑄 ∈ ℚ → e # 𝑄) | ||
6-Jan-2023 | btwnapz 9372 | A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) ⇒ ⊢ (𝜑 → 𝐵 # 𝐶) | ||
6-Jan-2023 | apmul2 8735 | Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐶 · 𝐴) # (𝐶 · 𝐵))) | ||
1-Jan-2023 | nnap0i 8939 | A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 # 0 | ||
31-Dec-2022 | 2logb9irrALT 14059 | Alternate proof of 2logb9irr 14056: The logarithm of nine to base two is not rational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
31-Dec-2022 | 2logb3irr 14058 | Example for logbprmirr 14057. The logarithm of three to base two is not rational. (Contributed by AV, 31-Dec-2022.) |
⊢ (2 logb 3) ∈ (ℝ ∖ ℚ) | ||
31-Dec-2022 | logbprmirr 14057 | The logarithm of a prime to a different prime base is not rational. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 14058). (Contributed by AV, 31-Dec-2022.) |
⊢ ((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
30-Dec-2022 | elpqb 9638 | A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.) |
⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
29-Dec-2022 | sqrt2cxp2logb9e3 14060 | The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12147 resp. 2logb9irr 14056), satisfying the statement in 2irrexpq 14061. (Contributed by AV, 29-Dec-2022.) |
⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | ||
29-Dec-2022 | 2logb9irr 14056 | Example for logbgcd1irr 14052. The logarithm of nine to base two is not rational. Also see 2logb9irrap 14062 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.) |
⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
29-Dec-2022 | logbgcd1irrap 14055 | The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.) |
⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄) | ||
29-Dec-2022 | logbgcd1irr 14052 | The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ). (Contributed by AV, 29-Dec-2022.) |
⊢ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
29-Dec-2022 | logbgt0b 14051 | The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.) |
⊢ ((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴)) | ||
29-Dec-2022 | cxpcom 14024 | Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶)↑𝑐𝐵)) | ||
29-Dec-2022 | elpq 9637 | A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.) |
⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
26-Dec-2022 | apdivmuld 8759 | Relationship between division and multiplication. (Contributed by Jim Kingdon, 26-Dec-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) | ||
25-Dec-2022 | tanaddaplem 11730 | A useful intermediate step in tanaddap 11731 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1)) | ||
25-Dec-2022 | subap0 8590 | Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | ||
23-Dec-2022 | 2irrexpq 14061 |
There exist real numbers 𝑎 and 𝑏 which are not rational
such
that (𝑎↑𝑏) is rational. Statement in the
Metamath book, section
1.1.5, footnote 27 on page 17, and the "constructive proof"
for theorem
1.2 of [Bauer], p. 483. This is a
constructive proof because it is
based on two explicitly named non-rational numbers (√‘2) and
(2 logb 9), see sqrt2irr0 12147, 2logb9irr 14056 and
sqrt2cxp2logb9e3 14060. Therefore, this proof is acceptable/usable
in
intuitionistic logic.
For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 14063. (Contributed by AV, 23-Dec-2022.) |
⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | ||
23-Dec-2022 | rpcxpsqrtth 14017 | Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 11024. (Contributed by AV, 23-Dec-2022.) |
⊢ (𝐴 ∈ ℝ+ → ((√‘𝐴)↑𝑐2) = 𝐴) | ||
23-Dec-2022 | sqrt2irr0 12147 | The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.) |
⊢ (√‘2) ∈ (ℝ ∖ ℚ) | ||
22-Dec-2022 | tanval3ap 11706 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
22-Dec-2022 | tanval2ap 11705 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
22-Dec-2022 | tanclapd 11704 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) # 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
21-Dec-2022 | tanclap 11701 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈ ℂ) | ||
21-Dec-2022 | tanvalap 11700 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
20-Dec-2022 | reef11 11691 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
20-Dec-2022 | efltim 11690 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) | ||
20-Dec-2022 | eqord1 8430 | A strictly increasing real function on a subset of ℝ is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) | ||
14-Dec-2022 | iserabs 11467 | Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) | ||
12-Dec-2022 | efap0 11669 | The exponential of a complex number is apart from zero. (Contributed by Jim Kingdon, 12-Dec-2022.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) | ||
8-Dec-2022 | efcllem 11651 | Lemma for efcl 11656. The series that defines the exponential function converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
8-Dec-2022 | efcllemp 11650 | Lemma for efcl 11656. The series that defines the exponential function converges. The ratio test cvgratgt0 11525 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 · (abs‘𝐴)) < 𝐾) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
8-Dec-2022 | eftvalcn 11649 | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
8-Dec-2022 | mertensabs 11529 | Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then (Σ𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘 − 𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.) |
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵)) | ||
3-Dec-2022 | mertenslemub 11526 | Lemma for mertensabs 11529. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜑 → 𝑋 ∈ 𝑇) & ⊢ (𝜑 → 𝑆 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) | ||
2-Dec-2022 | mertenslemi1 11527 | Lemma for mertensabs 11529. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.) |
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) & ⊢ (𝜑 → 𝑃 ∈ ℝ) & ⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))) & ⊢ (𝜑 → 0 ≤ 𝑃) & ⊢ (𝜑 → ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) | ||
2-Dec-2022 | fsum3cvg3 11388 | A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
2-Dec-2022 | fsum3cvg2 11386 | The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) | ||
24-Nov-2022 | cvgratnnlembern 11515 | Lemma for cvgratnn 11523. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) | ||
23-Nov-2022 | cvgratnnlemfm 11521 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 23-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀)) | ||
23-Nov-2022 | cvgratnnlemsumlt 11520 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 23-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)) < (𝐴 / (1 − 𝐴))) | ||
21-Nov-2022 | cvgratnnlemrate 11522 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 21-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀)) | ||
21-Nov-2022 | cvgratnnlemabsle 11519 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 21-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) | ||
21-Nov-2022 | cvgratnnlemseq 11518 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 21-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) | ||
15-Nov-2022 | cvgratnnlemmn 11517 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 15-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))) | ||
15-Nov-2022 | cvgratnnlemnexp 11516 | Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 15-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))) | ||
12-Nov-2022 | cvgratnn 11523 | Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11524 and cvgratgt0 11525, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11342 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) | ||
12-Nov-2022 | fsum3cvg 11370 | The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.) |
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) | ||
12-Nov-2022 | seq3id2 10495 | The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑥) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
11-Nov-2022 | cvgratgt0 11525 | Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
11-Nov-2022 | cvgratz 11524 | Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
4-Nov-2022 | seq3val 10444 | Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10447, seq3-1 10446 and seq3p1 10448, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) | ||
4-Nov-2022 | df-seqfrec 10432 |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seqf 10447, seq3-1 10446 and
seq3p1 10448. Typically, those are the main theorems
that would be used in
practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 11285), by climdm 11287 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the frec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain. (Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.) |
⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | ||
3-Nov-2022 | seq3f1o 10490 | Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
3-Nov-2022 | seq3m1 10454 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
29-Oct-2022 | absgtap 11502 | Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) | ||
29-Oct-2022 | absltap 11501 | Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) | ||
29-Oct-2022 | 1ap2 9115 | 1 is apart from 2. (Contributed by Jim Kingdon, 29-Oct-2022.) |
⊢ 1 # 2 | ||
28-Oct-2022 | expcnv 11496 | A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | ||
28-Oct-2022 | expcnvre 11495 | A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | ||
27-Oct-2022 | ennnfone 12409 | A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 𝐴 is countable (that's the 𝑓:ℕ0–onto→𝐴 part, as seen in theorems like ctm 7102), infinite (that's the part about being able to find an element of 𝐴 distinct from any mapping of a natural number via 𝑓), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0–onto→𝐴 ∧ ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝑓‘𝑘) ≠ (𝑓‘𝑗)))) | ||
27-Oct-2022 | ennnfonelemim 12408 | Lemma for ennnfone 12409. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝐴 ≈ ℕ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0–onto→𝐴 ∧ ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝑓‘𝑘) ≠ (𝑓‘𝑗)))) | ||
27-Oct-2022 | ennnfonelemr 12407 | Lemma for ennnfone 12409. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
27-Oct-2022 | ennnfonelemnn0 12406 | Lemma for ennnfone 12409. A version of ennnfonelemen 12405 expressed in terms of ℕ0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
24-Oct-2022 | pwm1geoserap1 11500 | The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 # 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) | ||
24-Oct-2022 | geoserap 11499 | The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
24-Oct-2022 | geosergap 11498 | The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
23-Oct-2022 | expcnvap0 11494 | A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | ||
22-Oct-2022 | divcnv 11489 | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.) |
⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
22-Oct-2022 | impcomd 255 | Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) | ||
21-Oct-2022 | isumsplit 11483 | Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) | ||
21-Oct-2022 | seq3split 10465 | Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
20-Oct-2022 | fidcenumlemrk 6947 | Lemma for fidcenum 6949. (Contributed by Jim Kingdon, 20-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝐾 ⊆ 𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾))) | ||
20-Oct-2022 | fidcenumlemrks 6946 | Lemma for fidcenum 6949. Induction step for fidcenumlemrk 6947. (Contributed by Jim Kingdon, 20-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐽 ∈ ω) & ⊢ (𝜑 → suc 𝐽 ⊆ 𝑁) & ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐽))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) | ||
19-Oct-2022 | fidcenum 6949 | A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as ∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.) |
⊢ (𝐴 ∈ Fin ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
19-Oct-2022 | fidcenumlemr 6948 | Lemma for fidcenum 6949. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ Fin) | ||
19-Oct-2022 | fidcenumlemim 6945 | Lemma for fidcenum 6949. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
17-Oct-2022 | iser3shft 11338 | Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) | ||
17-Oct-2022 | seq3shft 10831 | Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) | ||
16-Oct-2022 | resqrexlemf1 11001 | Lemma for resqrex 11019. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) | ||
16-Oct-2022 | resqrexlemf 11000 | Lemma for resqrex 11019. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | ||
16-Oct-2022 | resqrexlemp1rp 10999 | Lemma for resqrex 11019. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10447 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) | ||
16-Oct-2022 | resqrexlem1arp 10998 | Lemma for resqrex 11019. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10447 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) | ||
15-Oct-2022 | inffz 14473 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
15-Oct-2022 | supfz 14472 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
12-Oct-2022 | fsumlessfi 11452 | A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
12-Oct-2022 | modfsummodlemstep 11449 | Induction step for modfsummod 11450. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) | ||
10-Oct-2022 | fsum3 11379 | The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) | ||
10-Oct-2022 | fsumgcl 11378 | Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) | ||
10-Oct-2022 | seq3distr 10499 | The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | ||
10-Oct-2022 | seq3homo 10496 | Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) | ||
8-Oct-2022 | fsum2dlemstep 11426 | Lemma for fsum2d 11427- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.) |
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥) & ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴) & ⊢ (𝜑 → 𝑥 ∈ Fin) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) | ||
7-Oct-2022 | iunfidisj 6939 | The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ Disj 𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
7-Oct-2022 | disjnims 3992 | If a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) | ||
6-Oct-2022 | restidsing 4959 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
6-Oct-2022 | disjnim 3991 | If a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Jim Kingdon, 6-Oct-2022.) |
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (𝐵 ∩ 𝐶) = ∅)) | ||
5-Oct-2022 | dcun 3533 | The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) |
⊢ (𝜑 → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → DECID 𝑘 ∈ 𝐵) ⇒ ⊢ (𝜑 → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) | ||
4-Oct-2022 | ser3add 10491 | The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
3-Oct-2022 | seq3-1 10446 | Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
3-Oct-2022 | brrelex12i 4665 | Two classes that are related by a binary relation are sets. (An artifact of our ordered pair definition.) (Contributed by BJ, 3-Oct-2022.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
1-Oct-2022 | fsum3ser 11389 | A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11404 and fsump1 11412, which should make our notation clear and from which, along with closure fsumcl 11392, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) | ||
1-Oct-2022 | tpfidisj 6921 | A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) | ||
30-Sep-2022 | exdistrv 1910 | Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1902 and 19.42v 1906. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 1932. (Contributed by BJ, 30-Sep-2022.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | ||
28-Sep-2022 | seq3clss 10453 | Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) ∈ 𝑇) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
27-Sep-2022 | zmaxcl 11217 | The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℤ) | ||
24-Sep-2022 | isumss2 11385 | Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ∨ 𝐵 ∈ Fin)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) | ||
24-Sep-2022 | preimaf1ofi 6944 | The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) | ||
24-Sep-2022 | ifmdc 3573 | If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) | ||
24-Sep-2022 | bianassc 470 | An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) | ||
24-Sep-2022 | mpbiran2d 442 | Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
24-Sep-2022 | anim1ci 341 | Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) | ||
23-Sep-2022 | fisumss 11384 | Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
21-Sep-2022 | isumss 11383 | Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
21-Sep-2022 | pw1dom2 7220 | The power set of 1o dominates 2o. Also see pwpw0ss 3802 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
⊢ 2o ≼ 𝒫 1o | ||
18-Sep-2022 | sumfct 11366 | A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.) |
⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑘 ∈ 𝐴 𝐵) | ||
18-Sep-2022 | syl21anbrc 1182 | Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) | ||
18-Sep-2022 | an21 471 | Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | ||
16-Sep-2022 | fser0const 10502 | Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) | ||
8-Sep-2022 | zfz1isolemiso 10803 | Lemma for zfz1iso 10805. Adding one element to the order isomorphism. (Contributed by Jim Kingdon, 8-Sep-2022.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) & ⊢ (𝜑 → 𝐴 ∈ (1...(♯‘𝑋))) & ⊢ (𝜑 → 𝐵 ∈ (1...(♯‘𝑋))) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐴) < ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐵))) | ||
8-Sep-2022 | zfz1isolemsplit 10802 | Lemma for zfz1iso 10805. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) ⇒ ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) | ||
7-Sep-2022 | zfz1isolem1 10804 | Lemma for zfz1iso 10805. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.) |
⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦))) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≈ suc 𝐾) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)) | ||
6-Sep-2022 | fimaxq 10791 | A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.) |
⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
5-Sep-2022 | fimax2gtri 6895 | A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.) |
⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
5-Sep-2022 | fimax2gtrilemstep 6894 | Lemma for fimax2gtri 6895. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.) |
⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑈 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝑉 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ 𝑈 ¬ 𝑍𝑅𝑦) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝑈 ∪ {𝑉}) ¬ 𝑥𝑅𝑦) | ||
5-Sep-2022 | tridc 6893 | A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.) |
⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → DECID 𝐵𝑅𝐶) | ||
3-Sep-2022 | zfz1iso 10805 | A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | ||
2-Sep-2022 | rspceeqv 2859 | Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) | ||
1-Sep-2022 | ssidd 3176 | Weakening of ssid 3175. (Contributed by BJ, 1-Sep-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐴) | ||
31-Aug-2022 | fveqeq2 5520 | Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) | ||
30-Aug-2022 | iseqf1olemfvp 10483 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 30-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (⦋𝑇 / 𝑓⦌𝑃‘𝐴) = (𝐺‘(𝑇‘𝐴))) | ||
30-Aug-2022 | fveqeq2d 5519 | Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) | ||
29-Aug-2022 | seq3f1olemqsumkj 10484 | Lemma for seq3f1o 10490. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(◡𝐽‘𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) | ||
29-Aug-2022 | iseqf1olemqpcl 10482 | Lemma for seq3f1o 10490. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) | ||
29-Aug-2022 | iseqf1olemjpcl 10481 | Lemma for seq3f1o 10490. A closure lemma involving 𝐽 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) | ||
28-Aug-2022 | iseqf1olemqval 10473 | Lemma for seq3f1o 10490. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) | ||
27-Aug-2022 | iseqf1olemmo 10478 | Lemma for seq3f1o 10490. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
27-Aug-2022 | iseqf1olemnanb 10476 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) & ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
27-Aug-2022 | iseqf1olemab 10475 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) & ⊢ (𝜑 → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
27-Aug-2022 | iseqf1olemnab 10474 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | ||
27-Aug-2022 | iseqf1olemqcl 10472 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) | ||
26-Aug-2022 | iseqf1olemqf 10477 | Lemma for seq3f1o 10490. Domain and codomain of 𝑄. (Contributed by Jim Kingdon, 26-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) | ||
25-Aug-2022 | fzodcel 10138 | Decidability of membership in a half-open integer interval. (Contributed by Jim Kingdon, 25-Aug-2022.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀..^𝑁)) | ||
24-Aug-2022 | rspceaimv 2849 | Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) | ||
22-Aug-2022 | seq3f1olemqsumk 10485 | Lemma for seq3f1o 10490. 𝑄 gives the same sum as 𝐽 in the range (𝐾...𝑁). (Contributed by Jim Kingdon, 22-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | ||
21-Aug-2022 | seq3f1olemqsum 10486 | Lemma for seq3f1o 10490. 𝑄 gives the same sum as 𝐽. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | ||
21-Aug-2022 | iseqf1olemqk 10480 | Lemma for seq3f1o 10490. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄‘𝑥) = 𝑥) | ||
21-Aug-2022 | iseqf1olemqf1o 10479 | Lemma for seq3f1o 10490. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | ||
21-Aug-2022 | iseqf1olemklt 10471 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) ⇒ ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) | ||
21-Aug-2022 | iseqf1olemkle 10470 | Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝐾 ≤ (◡𝐽‘𝐾)) | ||
21-Aug-2022 | fssdm 5376 | Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.) |
⊢ 𝐷 ⊆ dom 𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Copyright terms: Public domain | W3C HTML validation [external] |