![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recosval | GIF version |
Description: The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
recosval | ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7931 | . . . . . . . 8 ⊢ i ∈ ℂ | |
2 | recn 7969 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | cjmul 10921 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) | |
4 | 1, 2, 3 | sylancr 414 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) |
5 | cji 10938 | . . . . . . . . 9 ⊢ (∗‘i) = -i | |
6 | 5 | oveq1i 5902 | . . . . . . . 8 ⊢ ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴)) |
7 | cjre 10918 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
8 | 7 | oveq2d 5908 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴)) |
9 | 6, 8 | eqtrid 2234 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴)) |
10 | 4, 9 | eqtrd 2222 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴)) |
11 | 10 | fveq2d 5535 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴))) |
12 | mulcl 7963 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
13 | 1, 2, 12 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
14 | efcj 11708 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) |
16 | 11, 15 | eqtr3d 2224 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴)))) |
17 | 16 | oveq2d 5908 | . . 3 ⊢ (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴))))) |
18 | 17 | oveq1d 5907 | . 2 ⊢ (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) |
19 | cosval 11738 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | |
20 | 2, 19 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
21 | efcl 11699 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
22 | reval 10885 | . . 3 ⊢ ((exp‘(i · 𝐴)) ∈ ℂ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) | |
23 | 13, 21, 22 | 3syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) |
24 | 18, 20, 23 | 3eqtr4d 2232 | 1 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5232 (class class class)co 5892 ℂcc 7834 ℝcr 7835 ici 7838 + caddc 7839 · cmul 7841 -cneg 8154 / cdiv 8654 2c2 8995 ∗ccj 10875 ℜcre 10876 expce 11677 cosccos 11680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-mulrcl 7935 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-0lt1 7942 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-precex 7946 ax-cnre 7947 ax-pre-ltirr 7948 ax-pre-ltwlin 7949 ax-pre-lttrn 7950 ax-pre-apti 7951 ax-pre-ltadd 7952 ax-pre-mulgt0 7953 ax-pre-mulext 7954 ax-arch 7955 ax-caucvg 7956 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-isom 5241 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-frec 6411 df-1o 6436 df-oadd 6440 df-er 6554 df-en 6762 df-dom 6763 df-fin 6764 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 df-sub 8155 df-neg 8156 df-reap 8557 df-ap 8564 df-div 8655 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-n0 9202 df-z 9279 df-uz 9554 df-q 9645 df-rp 9679 df-ico 9919 df-fz 10034 df-fzo 10168 df-seqfrec 10472 df-exp 10546 df-fac 10733 df-ihash 10783 df-cj 10878 df-re 10879 df-im 10880 df-rsqrt 11034 df-abs 11035 df-clim 11314 df-sumdc 11389 df-ef 11683 df-cos 11686 |
This theorem is referenced by: recos4p 11754 recoscl 11756 cos0 11765 |
Copyright terms: Public domain | W3C validator |