ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recosval GIF version

Theorem recosval 11434
Description: The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
recosval (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴))))

Proof of Theorem recosval
StepHypRef Expression
1 ax-icn 7727 . . . . . . . 8 i ∈ ℂ
2 recn 7765 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 cjmul 10669 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
41, 2, 3sylancr 410 . . . . . . 7 (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
5 cji 10686 . . . . . . . . 9 (∗‘i) = -i
65oveq1i 5784 . . . . . . . 8 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
7 cjre 10666 . . . . . . . . 9 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
87oveq2d 5790 . . . . . . . 8 (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴))
96, 8syl5eq 2184 . . . . . . 7 (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴))
104, 9eqtrd 2172 . . . . . 6 (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴))
1110fveq2d 5425 . . . . 5 (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴)))
12 mulcl 7759 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
131, 2, 12sylancr 410 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
14 efcj 11391 . . . . . 6 ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴))))
1513, 14syl 14 . . . . 5 (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴))))
1611, 15eqtr3d 2174 . . . 4 (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴))))
1716oveq2d 5790 . . 3 (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))))
1817oveq1d 5789 . 2 (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2))
19 cosval 11421 . . 3 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
202, 19syl 14 . 2 (𝐴 ∈ ℝ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
21 efcl 11382 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
22 reval 10633 . . 3 ((exp‘(i · 𝐴)) ∈ ℂ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2))
2313, 21, 223syl 17 . 2 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2))
2418, 20, 233eqtr4d 2182 1 (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7630  cr 7631  ici 7634   + caddc 7635   · cmul 7637  -cneg 7946   / cdiv 8444  2c2 8783  ccj 10623  cre 10624  expce 11360  cosccos 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-ico 9689  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-fac 10484  df-ihash 10534  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060  df-sumdc 11135  df-ef 11366  df-cos 11369
This theorem is referenced by:  recos4p  11437  recoscl  11439  cos0  11448
  Copyright terms: Public domain W3C validator