![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnq | GIF version |
Description: A positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
Ref | Expression |
---|---|
nnq | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssq 9643 | . 2 ⊢ ℕ ⊆ ℚ | |
2 | 1 | sseli 3163 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 ℕcn 8933 ℚcq 9633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-po 4308 df-iso 4309 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-z 9268 df-q 9634 |
This theorem is referenced by: flqdiv 10335 modqmulnn 10356 zmodcl 10358 zmodfz 10360 zmodid2 10366 m1modnnsub1 10384 addmodid 10386 modifeq2int 10400 modaddmodup 10401 modaddmodlo 10402 modsumfzodifsn 10410 addmodlteq 10412 modfsummodlemstep 11479 fprodmodd 11663 dvdsval3 11812 dvdsmodexp 11816 moddvds 11820 dvdslelemd 11863 dvdsmod 11882 mulmoddvds 11883 divalglemnn 11937 divalgmod 11946 modgcd 12006 crth 12238 phimullem 12239 eulerthlema 12244 fermltl 12248 prmdiv 12249 prmdiveq 12250 odzdvds 12259 modprm0 12268 nnnn0modprm0 12269 modprmn0modprm0 12270 pcaddlem 12352 fldivp1 12360 pockthlem 12368 pockthi 12370 4sqlem5 12394 4sqlem6 12395 4sqlem10 12399 mulgmodid 13054 lgsvalmod 14716 lgsdir2lem1 14725 lgsdir2lem4 14728 lgsdir2lem5 14729 lgsdirprm 14731 lgsne0 14735 lgseisenlem1 14746 lgseisenlem2 14747 2lgsoddprmlem2 14750 |
Copyright terms: Public domain | W3C validator |