| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxfvlsw | GIF version | ||
| Description: The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 3-May-2020.) |
| Ref | Expression |
|---|---|
| pfxfvlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 10211 | . . . . 5 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ ℕ) | |
| 2 | 1 | nnnn0d 9383 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ ℕ0) |
| 3 | pfxclg 11169 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) ∈ Word 𝑉) | |
| 4 | 2, 3 | sylan2 286 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (𝑊 prefix 𝐿) ∈ Word 𝑉) |
| 5 | lswwrd 11077 | . . 3 ⊢ ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (lastS‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1))) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1))) |
| 7 | fz1ssfz0 10274 | . . . . 5 ⊢ (1...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)) | |
| 8 | 7 | sseli 3197 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊))) |
| 9 | pfxlen 11176 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿) | |
| 10 | 8, 9 | sylan2 286 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿) |
| 11 | 10 | fvoveq1d 5989 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1)) = ((𝑊 prefix 𝐿)‘(𝐿 − 1))) |
| 12 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
| 13 | 8 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → 𝐿 ∈ (0...(♯‘𝑊))) |
| 14 | fzo0end 10389 | . . . . 5 ⊢ (𝐿 ∈ ℕ → (𝐿 − 1) ∈ (0..^𝐿)) | |
| 15 | 1, 14 | syl 14 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → (𝐿 − 1) ∈ (0..^𝐿)) |
| 16 | 15 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (𝐿 − 1) ∈ (0..^𝐿)) |
| 17 | pfxfv 11175 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿 − 1) ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) | |
| 18 | 12, 13, 16, 17 | syl3anc 1250 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) |
| 19 | 6, 11, 18 | 3eqtrd 2244 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 0cc0 7960 1c1 7961 − cmin 8278 ℕcn 9071 ℕ0cn0 9330 ...cfz 10165 ..^cfzo 10299 ♯chash 10957 Word cword 11031 lastSclsw 11075 prefix cpfx 11163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-ihash 10958 df-word 11032 df-lsw 11076 df-substr 11137 df-pfx 11164 |
| This theorem is referenced by: pfxtrcfvl 11188 |
| Copyright terms: Public domain | W3C validator |