ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodf GIF version

Theorem prodf 11560
Description: An infinite product of complex terms is a function from an upper set of integers to . (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodf.1 𝑍 = (ℤ𝑀)
prodf.2 (𝜑𝑀 ∈ ℤ)
prodf.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
prodf (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍

Proof of Theorem prodf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prodf.1 . 2 𝑍 = (ℤ𝑀)
2 prodf.2 . 2 (𝜑𝑀 ∈ ℤ)
3 prodf.3 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 mulcl 7952 . . 3 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
54adantl 277 . 2 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
61, 2, 3, 5seqf 10475 1 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wf 5224  cfv 5228  (class class class)co 5888  cc 7823   · cmul 7830  cz 9267  cuz 9542  seqcseq 10459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-seqfrec 10460
This theorem is referenced by:  clim2prod  11561  clim2divap  11562  prodf1f  11565  prodfap0  11567  prodfrecap  11568  prodfdivap  11569  ntrivcvgap  11570  fproddccvg  11594  fprodseq  11605
  Copyright terms: Public domain W3C validator