![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qdclt | GIF version |
Description: Rational < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.) |
Ref | Expression |
---|---|
qdclt | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtri3or 10300 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
2 | qre 9680 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
3 | qre 9680 | . . 3 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
4 | orc 713 | . . . . . 6 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)) | |
5 | df-dc 836 | . . . . . 6 ⊢ (DECID 𝐴 < 𝐵 ↔ (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)) | |
6 | 4, 5 | sylibr 134 | . . . . 5 ⊢ (𝐴 < 𝐵 → DECID 𝐴 < 𝐵) |
7 | 6 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → DECID 𝐴 < 𝐵)) |
8 | ltnr 8086 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
9 | 8 | adantr 276 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐴) |
10 | breq2 4033 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
11 | 10 | adantl 277 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) |
12 | 9, 11 | mtbid 673 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵) |
13 | olc 712 | . . . . . . . 8 ⊢ (¬ 𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)) | |
14 | 13, 5 | sylibr 134 | . . . . . . 7 ⊢ (¬ 𝐴 < 𝐵 → DECID 𝐴 < 𝐵) |
15 | 12, 14 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴 < 𝐵) |
16 | 15 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → DECID 𝐴 < 𝐵)) |
17 | 16 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → DECID 𝐴 < 𝐵)) |
18 | ltnsym 8095 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) | |
19 | 18 | ancoms 268 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) |
20 | 19, 14 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 < 𝐵)) |
21 | 7, 17, 20 | 3jaod 1315 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 < 𝐵)) |
22 | 2, 3, 21 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 < 𝐵)) |
23 | 1, 22 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 < 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ℝcr 7861 < clt 8044 ℚcq 9674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-mulrcl 7961 ax-addcom 7962 ax-mulcom 7963 ax-addass 7964 ax-mulass 7965 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-1rid 7969 ax-0id 7970 ax-rnegex 7971 ax-precex 7972 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-apti 7977 ax-pre-ltadd 7978 ax-pre-mulgt0 7979 ax-pre-mulext 7980 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-po 4325 df-iso 4326 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-1st 6184 df-2nd 6185 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-reap 8584 df-ap 8591 df-div 8682 df-inn 8973 df-n0 9231 df-z 9308 df-q 9675 df-rp 9710 |
This theorem is referenced by: gausslemma2dlem1a 15116 gausslemma2dlem1cl 15117 gausslemma2dlem1f1o 15118 gausslemma2dlem4 15122 |
Copyright terms: Public domain | W3C validator |