| Step | Hyp | Ref
| Expression |
| 1 | | gausslemma2d.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 2 | 1 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝐻)) → 𝑃 ∈ (ℙ ∖
{2})) |
| 3 | | gausslemma2d.h |
. . . . . . . . 9
⊢ 𝐻 = ((𝑃 − 1) / 2) |
| 4 | | gausslemma2d.r |
. . . . . . . . 9
⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| 5 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝐻)) → 𝑥 ∈ (1...𝐻)) |
| 6 | 2, 3, 4, 5 | gausslemma2dlem1cl 15310 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝐻)) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈
ℤ) |
| 7 | 6 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (1...𝐻)if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈
ℤ) |
| 8 | 4 | fnmpt 5385 |
. . . . . . 7
⊢
(∀𝑥 ∈
(1...𝐻)if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ ℤ → 𝑅 Fn (1...𝐻)) |
| 9 | 7, 8 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑅 Fn (1...𝐻)) |
| 10 | | dffn4 5487 |
. . . . . 6
⊢ (𝑅 Fn (1...𝐻) ↔ 𝑅:(1...𝐻)–onto→ran 𝑅) |
| 11 | 9, 10 | sylib 122 |
. . . . 5
⊢ (𝜑 → 𝑅:(1...𝐻)–onto→ran 𝑅) |
| 12 | 1, 3, 4 | gausslemma2dlem1a 15309 |
. . . . . 6
⊢ (𝜑 → ran 𝑅 = (1...𝐻)) |
| 13 | | foeq3 5479 |
. . . . . 6
⊢ (ran
𝑅 = (1...𝐻) → (𝑅:(1...𝐻)–onto→ran 𝑅 ↔ 𝑅:(1...𝐻)–onto→(1...𝐻))) |
| 14 | 12, 13 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑅:(1...𝐻)–onto→ran 𝑅 ↔ 𝑅:(1...𝐻)–onto→(1...𝐻))) |
| 15 | 11, 14 | mpbid 147 |
. . . 4
⊢ (𝜑 → 𝑅:(1...𝐻)–onto→(1...𝐻)) |
| 16 | | fof 5481 |
. . . 4
⊢ (𝑅:(1...𝐻)–onto→(1...𝐻) → 𝑅:(1...𝐻)⟶(1...𝐻)) |
| 17 | 15, 16 | syl 14 |
. . 3
⊢ (𝜑 → 𝑅:(1...𝐻)⟶(1...𝐻)) |
| 18 | | simprl 529 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑦 ∈ (1...𝐻)) |
| 19 | 18 | elfzelzd 10103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑦 ∈ ℤ) |
| 20 | 19 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → 𝑦 ∈ ℤ) |
| 21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 ∈ ℤ) |
| 22 | 21 | zcnd 9451 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 ∈ ℂ) |
| 23 | | simprr 531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑧 ∈ (1...𝐻)) |
| 24 | 23 | elfzelzd 10103 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑧 ∈ ℤ) |
| 25 | 24 | ad2antrr 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑧 ∈ ℤ) |
| 26 | 25 | zcnd 9451 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑧 ∈ ℂ) |
| 27 | | 2cnd 9065 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 ∈
ℂ) |
| 28 | | 2ap0 9085 |
. . . . . . . 8
⊢ 2 #
0 |
| 29 | 28 | a1i 9 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 # 0) |
| 30 | | simplr 528 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = (𝑅‘𝑧)) |
| 31 | | oveq1 5930 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 · 2) = (𝑦 · 2)) |
| 32 | 31 | breq1d 4044 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑦 · 2) < (𝑃 / 2))) |
| 33 | 31 | oveq2d 5939 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑦 · 2))) |
| 34 | 32, 31, 33 | ifbieq12d 3588 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) |
| 35 | 1 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑃 ∈ (ℙ ∖
{2})) |
| 36 | 35, 3, 4, 18 | gausslemma2dlem1cl 15310 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) ∈
ℤ) |
| 37 | 4, 34, 18, 36 | fvmptd3 5656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑅‘𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) |
| 38 | 37 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) |
| 39 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) < (𝑃 / 2)) |
| 40 | 39 | iftrued 3569 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) = (𝑦 · 2)) |
| 41 | 38, 40 | eqtrd 2229 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = (𝑦 · 2)) |
| 42 | | oveq1 5930 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 · 2) = (𝑧 · 2)) |
| 43 | 42 | breq1d 4044 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑧 · 2) < (𝑃 / 2))) |
| 44 | 42 | oveq2d 5939 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑧 · 2))) |
| 45 | 43, 42, 44 | ifbieq12d 3588 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2)))) |
| 46 | 35, 3, 4, 23 | gausslemma2dlem1cl 15310 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) ∈
ℤ) |
| 47 | 4, 45, 23, 46 | fvmptd3 5656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑅‘𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2)))) |
| 48 | 47 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2)))) |
| 49 | | 2z 9356 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
| 50 | | dvdsmul2 11981 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ 2 ∈
ℤ) → 2 ∥ (𝑦 · 2)) |
| 51 | 19, 49, 50 | sylancl 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 2 ∥ (𝑦 · 2)) |
| 52 | 51 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 ∥ (𝑦 · 2)) |
| 53 | 52, 41 | breqtrrd 4062 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅‘𝑦)) |
| 54 | 53 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅‘𝑦)) |
| 55 | | eldifi 3286 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
| 56 | | prmz 12289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℤ) |
| 58 | 35, 57 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑃 ∈ ℤ) |
| 59 | | oddn2prm 12440 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ¬ 2 ∥ 𝑃) |
| 60 | 1, 59 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ 2 ∥ 𝑃) |
| 61 | 60 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ¬ 2 ∥ 𝑃) |
| 62 | 49 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 2 ∈
ℤ) |
| 63 | 24, 62 | zmulcld 9456 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑧 · 2) ∈ ℤ) |
| 64 | | dvdsmul2 11981 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 2 ∈
ℤ) → 2 ∥ (𝑧 · 2)) |
| 65 | 24, 49, 64 | sylancl 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 2 ∥ (𝑧 · 2)) |
| 66 | | omeo 12065 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) ∧ ((𝑧 · 2) ∈ ℤ
∧ 2 ∥ (𝑧 ·
2))) → ¬ 2 ∥ (𝑃 − (𝑧 · 2))) |
| 67 | 58, 61, 63, 65, 66 | syl22anc 1250 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ¬ 2 ∥ (𝑃 − (𝑧 · 2))) |
| 68 | 67 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑃 − (𝑧 · 2))) |
| 69 | 47 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2)))) |
| 70 | | simpr 110 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ (𝑧 · 2) < (𝑃 / 2)) |
| 71 | 70 | iffalsed 3572 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑃 − (𝑧 · 2))) |
| 72 | 69, 71 | eqtrd 2229 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = (𝑃 − (𝑧 · 2))) |
| 73 | 72 | breq2d 4046 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅‘𝑧) ↔ 2 ∥ (𝑃 − (𝑧 · 2)))) |
| 74 | 68, 73 | mtbird 674 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅‘𝑧)) |
| 75 | 74 | ad4ant14 514 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅‘𝑧)) |
| 76 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → (𝑅‘𝑦) = (𝑅‘𝑧)) |
| 77 | 76 | breq2d 4046 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → (2 ∥ (𝑅‘𝑦) ↔ 2 ∥ (𝑅‘𝑧))) |
| 78 | 77 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅‘𝑦) ↔ 2 ∥ (𝑅‘𝑧))) |
| 79 | 75, 78 | mtbird 674 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅‘𝑦)) |
| 80 | 54, 79 | pm2.65da 662 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → ¬ ¬ (𝑧 · 2) < (𝑃 / 2)) |
| 81 | | zq 9702 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 · 2) ∈ ℤ
→ (𝑧 · 2)
∈ ℚ) |
| 82 | 63, 81 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑧 · 2) ∈ ℚ) |
| 83 | 1, 57 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 84 | | 2nn 9154 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ |
| 85 | | znq 9700 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑃 / 2)
∈ ℚ) |
| 86 | 83, 84, 85 | sylancl 413 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑃 / 2) ∈ ℚ) |
| 87 | 86 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑃 / 2) ∈ ℚ) |
| 88 | | qdclt 10337 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 · 2) ∈ ℚ
∧ (𝑃 / 2) ∈
ℚ) → DECID (𝑧 · 2) < (𝑃 / 2)) |
| 89 | 82, 87, 88 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → DECID (𝑧 · 2) < (𝑃 / 2)) |
| 90 | | exmiddc 837 |
. . . . . . . . . . . . 13
⊢
(DECID (𝑧 · 2) < (𝑃 / 2) → ((𝑧 · 2) < (𝑃 / 2) ∨ ¬ (𝑧 · 2) < (𝑃 / 2))) |
| 91 | 89, 90 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ((𝑧 · 2) < (𝑃 / 2) ∨ ¬ (𝑧 · 2) < (𝑃 / 2))) |
| 92 | 91 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → ((𝑧 · 2) < (𝑃 / 2) ∨ ¬ (𝑧 · 2) < (𝑃 / 2))) |
| 93 | 80, 92 | ecased 1360 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑧 · 2) < (𝑃 / 2)) |
| 94 | 93 | iftrued 3569 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑧 · 2)) |
| 95 | 48, 94 | eqtrd 2229 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = (𝑧 · 2)) |
| 96 | 30, 41, 95 | 3eqtr3d 2237 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) = (𝑧 · 2)) |
| 97 | 22, 26, 27, 29, 96 | mulcanap2ad 8693 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 = 𝑧) |
| 98 | 19 | zcnd 9451 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑦 ∈ ℂ) |
| 99 | 98 | ad2antrr 488 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 ∈ ℂ) |
| 100 | 24 | zcnd 9451 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑧 ∈ ℂ) |
| 101 | 100 | ad2antrr 488 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑧 ∈ ℂ) |
| 102 | | 2cnd 9065 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 2 ∈
ℂ) |
| 103 | 28 | a1i 9 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 2 # 0) |
| 104 | 83 | zcnd 9451 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 105 | 104 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑃 ∈ ℂ) |
| 106 | 19, 62 | zmulcld 9456 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑦 · 2) ∈ ℤ) |
| 107 | 106 | zcnd 9451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑦 · 2) ∈ ℂ) |
| 108 | 107 | ad2antrr 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) ∈ ℂ) |
| 109 | 63 | zcnd 9451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑧 · 2) ∈ ℂ) |
| 110 | 109 | ad2antrr 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑧 · 2) ∈ ℂ) |
| 111 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = (𝑅‘𝑧)) |
| 112 | 37 | ad2antrr 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) |
| 113 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → ¬ (𝑦 · 2) < (𝑃 / 2)) |
| 114 | 113 | iffalsed 3572 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) = (𝑃 − (𝑦 · 2))) |
| 115 | 112, 114 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = (𝑃 − (𝑦 · 2))) |
| 116 | 47 | ad2antrr 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2)))) |
| 117 | 65 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑧 · 2)) |
| 118 | 47 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2)))) |
| 119 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑧 · 2) < (𝑃 / 2)) |
| 120 | 119 | iftrued 3569 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑧 · 2)) |
| 121 | 118, 120 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = (𝑧 · 2)) |
| 122 | 117, 121 | breqtrrd 4062 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅‘𝑧)) |
| 123 | 77 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅‘𝑦) ↔ 2 ∥ (𝑅‘𝑧))) |
| 124 | 122, 123 | mpbird 167 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅‘𝑦)) |
| 125 | | omeo 12065 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) ∧ ((𝑦 · 2) ∈ ℤ
∧ 2 ∥ (𝑦 ·
2))) → ¬ 2 ∥ (𝑃 − (𝑦 · 2))) |
| 126 | 58, 61, 106, 51, 125 | syl22anc 1250 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ¬ 2 ∥ (𝑃 − (𝑦 · 2))) |
| 127 | 126 | ad3antrrr 492 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑃 − (𝑦 · 2))) |
| 128 | 37 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) |
| 129 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → ¬ (𝑦 · 2) < (𝑃 / 2)) |
| 130 | 129 | iffalsed 3572 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) = (𝑃 − (𝑦 · 2))) |
| 131 | 128, 130 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅‘𝑦) = (𝑃 − (𝑦 · 2))) |
| 132 | 131 | breq2d 4046 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅‘𝑦) ↔ 2 ∥ (𝑃 − (𝑦 · 2)))) |
| 133 | 127, 132 | mtbird 674 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅‘𝑦)) |
| 134 | 124, 133 | pm2.65da 662 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → ¬ (𝑧 · 2) < (𝑃 / 2)) |
| 135 | 134 | iffalsed 3572 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑃 − (𝑧 · 2))) |
| 136 | 116, 135 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅‘𝑧) = (𝑃 − (𝑧 · 2))) |
| 137 | 111, 115,
136 | 3eqtr3d 2237 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑃 − (𝑦 · 2)) = (𝑃 − (𝑧 · 2))) |
| 138 | 105, 108,
110, 137 | subcand 8380 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) = (𝑧 · 2)) |
| 139 | 99, 101, 102, 103, 138 | mulcanap2ad 8693 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 = 𝑧) |
| 140 | 49 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → 2 ∈ ℤ) |
| 141 | 20, 140 | zmulcld 9456 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → (𝑦 · 2) ∈ ℤ) |
| 142 | | zq 9702 |
. . . . . . . . 9
⊢ ((𝑦 · 2) ∈ ℤ
→ (𝑦 · 2)
∈ ℚ) |
| 143 | 141, 142 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → (𝑦 · 2) ∈ ℚ) |
| 144 | 86 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → (𝑃 / 2) ∈ ℚ) |
| 145 | | qdclt 10337 |
. . . . . . . 8
⊢ (((𝑦 · 2) ∈ ℚ
∧ (𝑃 / 2) ∈
ℚ) → DECID (𝑦 · 2) < (𝑃 / 2)) |
| 146 | 143, 144,
145 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → DECID (𝑦 · 2) < (𝑃 / 2)) |
| 147 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID (𝑦 · 2) < (𝑃 / 2) → ((𝑦 · 2) < (𝑃 / 2) ∨ ¬ (𝑦 · 2) < (𝑃 / 2))) |
| 148 | 146, 147 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → ((𝑦 · 2) < (𝑃 / 2) ∨ ¬ (𝑦 · 2) < (𝑃 / 2))) |
| 149 | 97, 139, 148 | mpjaodan 799 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅‘𝑦) = (𝑅‘𝑧)) → 𝑦 = 𝑧) |
| 150 | 149 | ex 115 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ((𝑅‘𝑦) = (𝑅‘𝑧) → 𝑦 = 𝑧)) |
| 151 | 150 | ralrimivva 2579 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ (1...𝐻)∀𝑧 ∈ (1...𝐻)((𝑅‘𝑦) = (𝑅‘𝑧) → 𝑦 = 𝑧)) |
| 152 | | dff13 5816 |
. . 3
⊢ (𝑅:(1...𝐻)–1-1→(1...𝐻) ↔ (𝑅:(1...𝐻)⟶(1...𝐻) ∧ ∀𝑦 ∈ (1...𝐻)∀𝑧 ∈ (1...𝐻)((𝑅‘𝑦) = (𝑅‘𝑧) → 𝑦 = 𝑧))) |
| 153 | 17, 151, 152 | sylanbrc 417 |
. 2
⊢ (𝜑 → 𝑅:(1...𝐻)–1-1→(1...𝐻)) |
| 154 | | df-f1o 5266 |
. 2
⊢ (𝑅:(1...𝐻)–1-1-onto→(1...𝐻) ↔ (𝑅:(1...𝐻)–1-1→(1...𝐻) ∧ 𝑅:(1...𝐻)–onto→(1...𝐻))) |
| 155 | 153, 15, 154 | sylanbrc 417 |
1
⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) |