ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem1f1o GIF version

Theorem gausslemma2dlem1f1o 15268
Description: Lemma for gausslemma2dlem1 15269. (Contributed by Jim Kingdon, 9-Aug-2025.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
Assertion
Ref Expression
gausslemma2dlem1f1o (𝜑𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem1f1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝐻)) → 𝑃 ∈ (ℙ ∖ {2}))
3 gausslemma2d.h . . . . . . . . 9 𝐻 = ((𝑃 − 1) / 2)
4 gausslemma2d.r . . . . . . . . 9 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
5 simpr 110 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝐻)) → 𝑥 ∈ (1...𝐻))
62, 3, 4, 5gausslemma2dlem1cl 15267 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝐻)) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ ℤ)
76ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (1...𝐻)if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ ℤ)
84fnmpt 5384 . . . . . . 7 (∀𝑥 ∈ (1...𝐻)if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ ℤ → 𝑅 Fn (1...𝐻))
97, 8syl 14 . . . . . 6 (𝜑𝑅 Fn (1...𝐻))
10 dffn4 5486 . . . . . 6 (𝑅 Fn (1...𝐻) ↔ 𝑅:(1...𝐻)–onto→ran 𝑅)
119, 10sylib 122 . . . . 5 (𝜑𝑅:(1...𝐻)–onto→ran 𝑅)
121, 3, 4gausslemma2dlem1a 15266 . . . . . 6 (𝜑 → ran 𝑅 = (1...𝐻))
13 foeq3 5478 . . . . . 6 (ran 𝑅 = (1...𝐻) → (𝑅:(1...𝐻)–onto→ran 𝑅𝑅:(1...𝐻)–onto→(1...𝐻)))
1412, 13syl 14 . . . . 5 (𝜑 → (𝑅:(1...𝐻)–onto→ran 𝑅𝑅:(1...𝐻)–onto→(1...𝐻)))
1511, 14mpbid 147 . . . 4 (𝜑𝑅:(1...𝐻)–onto→(1...𝐻))
16 fof 5480 . . . 4 (𝑅:(1...𝐻)–onto→(1...𝐻) → 𝑅:(1...𝐻)⟶(1...𝐻))
1715, 16syl 14 . . 3 (𝜑𝑅:(1...𝐻)⟶(1...𝐻))
18 simprl 529 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑦 ∈ (1...𝐻))
1918elfzelzd 10098 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑦 ∈ ℤ)
2019adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → 𝑦 ∈ ℤ)
2120adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 ∈ ℤ)
2221zcnd 9446 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 ∈ ℂ)
23 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑧 ∈ (1...𝐻))
2423elfzelzd 10098 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑧 ∈ ℤ)
2524ad2antrr 488 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑧 ∈ ℤ)
2625zcnd 9446 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑧 ∈ ℂ)
27 2cnd 9060 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 ∈ ℂ)
28 2ap0 9080 . . . . . . . 8 2 # 0
2928a1i 9 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 # 0)
30 simplr 528 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑦) = (𝑅𝑧))
31 oveq1 5929 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 · 2) = (𝑦 · 2))
3231breq1d 4043 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑦 · 2) < (𝑃 / 2)))
3331oveq2d 5938 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑦 · 2)))
3432, 31, 33ifbieq12d 3587 . . . . . . . . . . 11 (𝑥 = 𝑦 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
351adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑃 ∈ (ℙ ∖ {2}))
3635, 3, 4, 18gausslemma2dlem1cl 15267 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) ∈ ℤ)
374, 34, 18, 36fvmptd3 5655 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑅𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
3837ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
39 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) < (𝑃 / 2))
4039iftrued 3568 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) = (𝑦 · 2))
4138, 40eqtrd 2229 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑦) = (𝑦 · 2))
42 oveq1 5929 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 · 2) = (𝑧 · 2))
4342breq1d 4043 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑧 · 2) < (𝑃 / 2)))
4442oveq2d 5938 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑧 · 2)))
4543, 42, 44ifbieq12d 3587 . . . . . . . . . . 11 (𝑥 = 𝑧 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))))
4635, 3, 4, 23gausslemma2dlem1cl 15267 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) ∈ ℤ)
474, 45, 23, 46fvmptd3 5655 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑅𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))))
4847ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))))
49 2z 9351 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
50 dvdsmul2 11963 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑦 · 2))
5119, 49, 50sylancl 413 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 2 ∥ (𝑦 · 2))
5251ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 ∥ (𝑦 · 2))
5352, 41breqtrrd 4061 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅𝑦))
5453adantr 276 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅𝑦))
55 eldifi 3285 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
56 prmz 12255 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5755, 56syl 14 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
5835, 57syl 14 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑃 ∈ ℤ)
59 oddn2prm 12406 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑃)
601, 59syl 14 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 2 ∥ 𝑃)
6160adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ¬ 2 ∥ 𝑃)
6249a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 2 ∈ ℤ)
6324, 62zmulcld 9451 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑧 · 2) ∈ ℤ)
64 dvdsmul2 11963 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑧 · 2))
6524, 49, 64sylancl 413 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 2 ∥ (𝑧 · 2))
66 omeo 12045 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ ((𝑧 · 2) ∈ ℤ ∧ 2 ∥ (𝑧 · 2))) → ¬ 2 ∥ (𝑃 − (𝑧 · 2)))
6758, 61, 63, 65, 66syl22anc 1250 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ¬ 2 ∥ (𝑃 − (𝑧 · 2)))
6867adantr 276 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑃 − (𝑧 · 2)))
6947adantr 276 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (𝑅𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))))
70 simpr 110 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ (𝑧 · 2) < (𝑃 / 2))
7170iffalsed 3571 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑃 − (𝑧 · 2)))
7269, 71eqtrd 2229 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (𝑅𝑧) = (𝑃 − (𝑧 · 2)))
7372breq2d 4045 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅𝑧) ↔ 2 ∥ (𝑃 − (𝑧 · 2))))
7468, 73mtbird 674 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅𝑧))
7574ad4ant14 514 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅𝑧))
76 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → (𝑅𝑦) = (𝑅𝑧))
7776breq2d 4045 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → (2 ∥ (𝑅𝑦) ↔ 2 ∥ (𝑅𝑧)))
7877ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅𝑦) ↔ 2 ∥ (𝑅𝑧)))
7975, 78mtbird 674 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) ∧ ¬ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅𝑦))
8054, 79pm2.65da 662 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → ¬ ¬ (𝑧 · 2) < (𝑃 / 2))
81 zq 9697 . . . . . . . . . . . . . . 15 ((𝑧 · 2) ∈ ℤ → (𝑧 · 2) ∈ ℚ)
8263, 81syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑧 · 2) ∈ ℚ)
831, 57syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
84 2nn 9149 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
85 znq 9695 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 / 2) ∈ ℚ)
8683, 84, 85sylancl 413 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 / 2) ∈ ℚ)
8786adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑃 / 2) ∈ ℚ)
88 qdclt 10321 . . . . . . . . . . . . . 14 (((𝑧 · 2) ∈ ℚ ∧ (𝑃 / 2) ∈ ℚ) → DECID (𝑧 · 2) < (𝑃 / 2))
8982, 87, 88syl2anc 411 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → DECID (𝑧 · 2) < (𝑃 / 2))
90 exmiddc 837 . . . . . . . . . . . . 13 (DECID (𝑧 · 2) < (𝑃 / 2) → ((𝑧 · 2) < (𝑃 / 2) ∨ ¬ (𝑧 · 2) < (𝑃 / 2)))
9189, 90syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ((𝑧 · 2) < (𝑃 / 2) ∨ ¬ (𝑧 · 2) < (𝑃 / 2)))
9291ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → ((𝑧 · 2) < (𝑃 / 2) ∨ ¬ (𝑧 · 2) < (𝑃 / 2)))
9380, 92ecased 1360 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑧 · 2) < (𝑃 / 2))
9493iftrued 3568 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑧 · 2))
9548, 94eqtrd 2229 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑧) = (𝑧 · 2))
9630, 41, 953eqtr3d 2237 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) = (𝑧 · 2))
9722, 26, 27, 29, 96mulcanap2ad 8688 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 = 𝑧)
9819zcnd 9446 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑦 ∈ ℂ)
9998ad2antrr 488 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 ∈ ℂ)
10024zcnd 9446 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → 𝑧 ∈ ℂ)
101100ad2antrr 488 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑧 ∈ ℂ)
102 2cnd 9060 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 2 ∈ ℂ)
10328a1i 9 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 2 # 0)
10483zcnd 9446 . . . . . . . . 9 (𝜑𝑃 ∈ ℂ)
105104ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑃 ∈ ℂ)
10619, 62zmulcld 9451 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑦 · 2) ∈ ℤ)
107106zcnd 9446 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑦 · 2) ∈ ℂ)
108107ad2antrr 488 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) ∈ ℂ)
10963zcnd 9446 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → (𝑧 · 2) ∈ ℂ)
110109ad2antrr 488 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑧 · 2) ∈ ℂ)
111 simplr 528 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑦) = (𝑅𝑧))
11237ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
113 simpr 110 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → ¬ (𝑦 · 2) < (𝑃 / 2))
114113iffalsed 3571 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) = (𝑃 − (𝑦 · 2)))
115112, 114eqtrd 2229 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑦) = (𝑃 − (𝑦 · 2)))
11647ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))))
11765ad3antrrr 492 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑧 · 2))
11847ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅𝑧) = if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))))
119 simpr 110 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑧 · 2) < (𝑃 / 2))
120119iftrued 3568 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑧 · 2))
121118, 120eqtrd 2229 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅𝑧) = (𝑧 · 2))
122117, 121breqtrrd 4061 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅𝑧))
12377ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅𝑦) ↔ 2 ∥ (𝑅𝑧)))
124122, 123mpbird 167 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → 2 ∥ (𝑅𝑦))
125 omeo 12045 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ ((𝑦 · 2) ∈ ℤ ∧ 2 ∥ (𝑦 · 2))) → ¬ 2 ∥ (𝑃 − (𝑦 · 2)))
12658, 61, 106, 51, 125syl22anc 1250 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ¬ 2 ∥ (𝑃 − (𝑦 · 2)))
127126ad3antrrr 492 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑃 − (𝑦 · 2)))
12837ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅𝑦) = if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
129 simplr 528 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → ¬ (𝑦 · 2) < (𝑃 / 2))
130129iffalsed 3571 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))) = (𝑃 − (𝑦 · 2)))
131128, 130eqtrd 2229 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (𝑅𝑦) = (𝑃 − (𝑦 · 2)))
132131breq2d 4045 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → (2 ∥ (𝑅𝑦) ↔ 2 ∥ (𝑃 − (𝑦 · 2))))
133127, 132mtbird 674 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) ∧ (𝑧 · 2) < (𝑃 / 2)) → ¬ 2 ∥ (𝑅𝑦))
134124, 133pm2.65da 662 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → ¬ (𝑧 · 2) < (𝑃 / 2))
135134iffalsed 3571 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → if((𝑧 · 2) < (𝑃 / 2), (𝑧 · 2), (𝑃 − (𝑧 · 2))) = (𝑃 − (𝑧 · 2)))
136116, 135eqtrd 2229 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑅𝑧) = (𝑃 − (𝑧 · 2)))
137111, 115, 1363eqtr3d 2237 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑃 − (𝑦 · 2)) = (𝑃 − (𝑧 · 2)))
138105, 108, 110, 137subcand 8376 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → (𝑦 · 2) = (𝑧 · 2))
13999, 101, 102, 103, 138mulcanap2ad 8688 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) ∧ ¬ (𝑦 · 2) < (𝑃 / 2)) → 𝑦 = 𝑧)
14049a1i 9 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → 2 ∈ ℤ)
14120, 140zmulcld 9451 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → (𝑦 · 2) ∈ ℤ)
142 zq 9697 . . . . . . . . 9 ((𝑦 · 2) ∈ ℤ → (𝑦 · 2) ∈ ℚ)
143141, 142syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → (𝑦 · 2) ∈ ℚ)
14486ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → (𝑃 / 2) ∈ ℚ)
145 qdclt 10321 . . . . . . . 8 (((𝑦 · 2) ∈ ℚ ∧ (𝑃 / 2) ∈ ℚ) → DECID (𝑦 · 2) < (𝑃 / 2))
146143, 144, 145syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → DECID (𝑦 · 2) < (𝑃 / 2))
147 exmiddc 837 . . . . . . 7 (DECID (𝑦 · 2) < (𝑃 / 2) → ((𝑦 · 2) < (𝑃 / 2) ∨ ¬ (𝑦 · 2) < (𝑃 / 2)))
148146, 147syl 14 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → ((𝑦 · 2) < (𝑃 / 2) ∨ ¬ (𝑦 · 2) < (𝑃 / 2)))
14997, 139, 148mpjaodan 799 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) ∧ (𝑅𝑦) = (𝑅𝑧)) → 𝑦 = 𝑧)
150149ex 115 . . . 4 ((𝜑 ∧ (𝑦 ∈ (1...𝐻) ∧ 𝑧 ∈ (1...𝐻))) → ((𝑅𝑦) = (𝑅𝑧) → 𝑦 = 𝑧))
151150ralrimivva 2579 . . 3 (𝜑 → ∀𝑦 ∈ (1...𝐻)∀𝑧 ∈ (1...𝐻)((𝑅𝑦) = (𝑅𝑧) → 𝑦 = 𝑧))
152 dff13 5815 . . 3 (𝑅:(1...𝐻)–1-1→(1...𝐻) ↔ (𝑅:(1...𝐻)⟶(1...𝐻) ∧ ∀𝑦 ∈ (1...𝐻)∀𝑧 ∈ (1...𝐻)((𝑅𝑦) = (𝑅𝑧) → 𝑦 = 𝑧)))
15317, 151, 152sylanbrc 417 . 2 (𝜑𝑅:(1...𝐻)–1-1→(1...𝐻))
154 df-f1o 5265 . 2 (𝑅:(1...𝐻)–1-1-onto→(1...𝐻) ↔ (𝑅:(1...𝐻)–1-1→(1...𝐻) ∧ 𝑅:(1...𝐻)–onto→(1...𝐻)))
155153, 15, 154sylanbrc 417 1 (𝜑𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  cdif 3154  ifcif 3561  {csn 3622   class class class wbr 4033  cmpt 4094  ran crn 4664   Fn wfn 5253  wf 5254  1-1wf1 5255  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cc 7875  0cc0 7877  1c1 7878   · cmul 7882   < clt 8059  cmin 8195   # cap 8605   / cdiv 8696  cn 8987  2c2 9038  cz 9323  cq 9690  ...cfz 10080  cdvds 11936  cprime 12251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-ioo 9964  df-fz 10081  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-prm 12252
This theorem is referenced by:  gausslemma2dlem1  15269
  Copyright terms: Public domain W3C validator