![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2div2e1 | Structured version Visualization version GIF version |
Description: 2 divided by 2 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2div2e1 | ⊢ (2 / 2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11515 | . 2 ⊢ 2 ∈ ℂ | |
2 | 2ne0 11551 | . 2 ⊢ 2 ≠ 0 | |
3 | 1, 2 | dividi 11174 | 1 ⊢ (2 / 2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 (class class class)co 6976 1c1 10336 / cdiv 11098 2c2 11495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-2 11503 |
This theorem is referenced by: 1mhlfehlf 11666 nneo 11879 zeo 11881 fldiv4p1lem1div2 13020 faclbnd2 13466 iseralt 14902 bpoly3 15272 sin02gt0 15405 ovolunlem1a 23800 ang180lem2 25089 cosatan 25200 atantayl2 25217 chtub 25490 lgseisenlem1 25653 2lgslem3b 25675 pntpbnd2 25865 sqsscirc1 30792 sumnnodd 41340 stoweidlem14 41728 dirkertrigeqlem3 41814 fourierswlem 41944 1oddALTV 43221 2evenALTV 43223 |
Copyright terms: Public domain | W3C validator |