| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halflt1 | Structured version Visualization version GIF version | ||
| Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| halflt1 | ⊢ (1 / 2) < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1div1e1 11833 | . . 3 ⊢ (1 / 1) = 1 | |
| 2 | 1lt2 12312 | . . 3 ⊢ 1 < 2 | |
| 3 | 1, 2 | eqbrtri 5116 | . 2 ⊢ (1 / 1) < 2 |
| 4 | 1re 11134 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | 2re 12220 | . . 3 ⊢ 2 ∈ ℝ | |
| 6 | 0lt1 11660 | . . 3 ⊢ 0 < 1 | |
| 7 | 2pos 12249 | . . 3 ⊢ 0 < 2 | |
| 8 | 4, 4, 5, 6, 7 | ltdiv23ii 12070 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
| 9 | 3, 8 | mpbi 230 | 1 ⊢ (1 / 2) < 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7353 1c1 11029 < clt 11168 / cdiv 11795 2c2 12201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-2 12209 |
| This theorem is referenced by: 2tnp1ge0ge0 13751 absrdbnd 15267 geo2sum 15798 geo2lim 15800 geoihalfsum 15807 efcllem 16002 rpnnen2lem12 16152 ltoddhalfle 16290 halfleoddlt 16291 bitsp1o 16362 elii1 24847 htpycc 24895 pcoval1 24929 pco1 24931 pcocn 24933 pcohtpylem 24935 pcopt 24938 pcopt2 24939 pcoass 24940 pcorevlem 24942 iscmet3lem3 25206 mbfi1fseqlem6 25637 itg2monolem3 25669 aaliou3lem3 26268 cxpcn3lem 26673 lgamgulmlem2 26956 lgsquadlem2 27308 chtppilim 27402 dnizeq0 36448 dnibndlem12 36462 knoppcnlem4 36469 cnndvlem1 36510 iccioo01 37300 cntotbnd 37775 halffl 45278 sumnnodd 45612 stoweidlem5 45987 stoweidlem14 45996 stoweidlem28 46010 dirkertrigeqlem3 46082 dirkercncflem1 46085 dirkercncflem2 46086 ceilhalf1 47319 zofldiv2ALTV 47647 zofldiv2 48517 sepfsepc 48913 |
| Copyright terms: Public domain | W3C validator |