| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halflt1 | Structured version Visualization version GIF version | ||
| Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| halflt1 | ⊢ (1 / 2) < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1div1e1 11932 | . . 3 ⊢ (1 / 1) = 1 | |
| 2 | 1lt2 12411 | . . 3 ⊢ 1 < 2 | |
| 3 | 1, 2 | eqbrtri 5140 | . 2 ⊢ (1 / 1) < 2 |
| 4 | 1re 11235 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | 2re 12314 | . . 3 ⊢ 2 ∈ ℝ | |
| 6 | 0lt1 11759 | . . 3 ⊢ 0 < 1 | |
| 7 | 2pos 12343 | . . 3 ⊢ 0 < 2 | |
| 8 | 4, 4, 5, 6, 7 | ltdiv23ii 12169 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
| 9 | 3, 8 | mpbi 230 | 1 ⊢ (1 / 2) < 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 (class class class)co 7405 1c1 11130 < clt 11269 / cdiv 11894 2c2 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-2 12303 |
| This theorem is referenced by: 2tnp1ge0ge0 13846 absrdbnd 15360 geo2sum 15889 geo2lim 15891 geoihalfsum 15898 efcllem 16093 rpnnen2lem12 16243 ltoddhalfle 16380 halfleoddlt 16381 bitsp1o 16452 elii1 24882 htpycc 24930 pcoval1 24964 pco1 24966 pcocn 24968 pcohtpylem 24970 pcopt 24973 pcopt2 24974 pcoass 24975 pcorevlem 24977 iscmet3lem3 25242 mbfi1fseqlem6 25673 itg2monolem3 25705 aaliou3lem3 26304 cxpcn3lem 26709 lgamgulmlem2 26992 lgsquadlem2 27344 chtppilim 27438 dnizeq0 36493 dnibndlem12 36507 knoppcnlem4 36514 cnndvlem1 36555 iccioo01 37345 cntotbnd 37820 halffl 45325 sumnnodd 45659 stoweidlem5 46034 stoweidlem14 46043 stoweidlem28 46057 dirkertrigeqlem3 46129 dirkercncflem1 46132 dirkercncflem2 46133 ceilhalf1 47363 zofldiv2ALTV 47676 zofldiv2 48511 sepfsepc 48902 |
| Copyright terms: Public domain | W3C validator |