Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > halflt1 | Structured version Visualization version GIF version |
Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
halflt1 | ⊢ (1 / 2) < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1div1e1 11648 | . . 3 ⊢ (1 / 1) = 1 | |
2 | 1lt2 12127 | . . 3 ⊢ 1 < 2 | |
3 | 1, 2 | eqbrtri 5099 | . 2 ⊢ (1 / 1) < 2 |
4 | 1re 10959 | . . 3 ⊢ 1 ∈ ℝ | |
5 | 2re 12030 | . . 3 ⊢ 2 ∈ ℝ | |
6 | 0lt1 11480 | . . 3 ⊢ 0 < 1 | |
7 | 2pos 12059 | . . 3 ⊢ 0 < 2 | |
8 | 4, 4, 5, 6, 7 | ltdiv23ii 11885 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
9 | 3, 8 | mpbi 229 | 1 ⊢ (1 / 2) < 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5078 (class class class)co 7268 1c1 10856 < clt 10993 / cdiv 11615 2c2 12011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-2 12019 |
This theorem is referenced by: 2tnp1ge0ge0 13530 absrdbnd 15034 geo2sum 15566 geo2lim 15568 geoihalfsum 15575 efcllem 15768 rpnnen2lem12 15915 ltoddhalfle 16051 halfleoddlt 16052 bitsp1o 16121 elii1 24079 htpycc 24124 pcoval1 24157 pco1 24159 pcocn 24161 pcohtpylem 24163 pcopt 24166 pcopt2 24167 pcoass 24168 pcorevlem 24170 iscmet3lem3 24435 mbfi1fseqlem6 24866 itg2monolem3 24898 aaliou3lem3 25485 cxpcn3lem 25881 lgamgulmlem2 26160 lgsquadlem2 26510 chtppilim 26604 dnizeq0 34634 dnibndlem12 34648 knoppcnlem4 34655 cnndvlem1 34696 iccioo01 35477 cntotbnd 35933 halffl 42789 sumnnodd 43125 stoweidlem5 43500 stoweidlem14 43509 stoweidlem28 43523 dirkertrigeqlem3 43595 dirkercncflem1 43598 dirkercncflem2 43599 zofldiv2ALTV 45066 zofldiv2 45829 sepfsepc 46173 |
Copyright terms: Public domain | W3C validator |