| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halflt1 | Structured version Visualization version GIF version | ||
| Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| halflt1 | ⊢ (1 / 2) < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1div1e1 11880 | . . 3 ⊢ (1 / 1) = 1 | |
| 2 | 1lt2 12359 | . . 3 ⊢ 1 < 2 | |
| 3 | 1, 2 | eqbrtri 5131 | . 2 ⊢ (1 / 1) < 2 |
| 4 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | 2re 12267 | . . 3 ⊢ 2 ∈ ℝ | |
| 6 | 0lt1 11707 | . . 3 ⊢ 0 < 1 | |
| 7 | 2pos 12296 | . . 3 ⊢ 0 < 2 | |
| 8 | 4, 4, 5, 6, 7 | ltdiv23ii 12117 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
| 9 | 3, 8 | mpbi 230 | 1 ⊢ (1 / 2) < 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 (class class class)co 7390 1c1 11076 < clt 11215 / cdiv 11842 2c2 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-2 12256 |
| This theorem is referenced by: 2tnp1ge0ge0 13798 absrdbnd 15315 geo2sum 15846 geo2lim 15848 geoihalfsum 15855 efcllem 16050 rpnnen2lem12 16200 ltoddhalfle 16338 halfleoddlt 16339 bitsp1o 16410 elii1 24838 htpycc 24886 pcoval1 24920 pco1 24922 pcocn 24924 pcohtpylem 24926 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevlem 24933 iscmet3lem3 25197 mbfi1fseqlem6 25628 itg2monolem3 25660 aaliou3lem3 26259 cxpcn3lem 26664 lgamgulmlem2 26947 lgsquadlem2 27299 chtppilim 27393 dnizeq0 36470 dnibndlem12 36484 knoppcnlem4 36491 cnndvlem1 36532 iccioo01 37322 cntotbnd 37797 halffl 45301 sumnnodd 45635 stoweidlem5 46010 stoweidlem14 46019 stoweidlem28 46033 dirkertrigeqlem3 46105 dirkercncflem1 46108 dirkercncflem2 46109 ceilhalf1 47339 zofldiv2ALTV 47667 zofldiv2 48524 sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |