![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > halflt1 | Structured version Visualization version GIF version |
Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
halflt1 | ⊢ (1 / 2) < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1div1e1 11956 | . . 3 ⊢ (1 / 1) = 1 | |
2 | 1lt2 12435 | . . 3 ⊢ 1 < 2 | |
3 | 1, 2 | eqbrtri 5169 | . 2 ⊢ (1 / 1) < 2 |
4 | 1re 11259 | . . 3 ⊢ 1 ∈ ℝ | |
5 | 2re 12338 | . . 3 ⊢ 2 ∈ ℝ | |
6 | 0lt1 11783 | . . 3 ⊢ 0 < 1 | |
7 | 2pos 12367 | . . 3 ⊢ 0 < 2 | |
8 | 4, 4, 5, 6, 7 | ltdiv23ii 12193 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
9 | 3, 8 | mpbi 230 | 1 ⊢ (1 / 2) < 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 (class class class)co 7431 1c1 11154 < clt 11293 / cdiv 11918 2c2 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 |
This theorem is referenced by: 2tnp1ge0ge0 13866 absrdbnd 15377 geo2sum 15906 geo2lim 15908 geoihalfsum 15915 efcllem 16110 rpnnen2lem12 16258 ltoddhalfle 16395 halfleoddlt 16396 bitsp1o 16467 elii1 24978 htpycc 25026 pcoval1 25060 pco1 25062 pcocn 25064 pcohtpylem 25066 pcopt 25069 pcopt2 25070 pcoass 25071 pcorevlem 25073 iscmet3lem3 25338 mbfi1fseqlem6 25770 itg2monolem3 25802 aaliou3lem3 26401 cxpcn3lem 26805 lgamgulmlem2 27088 lgsquadlem2 27440 chtppilim 27534 dnizeq0 36458 dnibndlem12 36472 knoppcnlem4 36479 cnndvlem1 36520 iccioo01 37310 cntotbnd 37783 halffl 45247 sumnnodd 45586 stoweidlem5 45961 stoweidlem14 45970 stoweidlem28 45984 dirkertrigeqlem3 46056 dirkercncflem1 46059 dirkercncflem2 46060 zofldiv2ALTV 47587 zofldiv2 48381 sepfsepc 48724 |
Copyright terms: Public domain | W3C validator |