| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halflt1 | Structured version Visualization version GIF version | ||
| Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| halflt1 | ⊢ (1 / 2) < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1div1e1 11873 | . . 3 ⊢ (1 / 1) = 1 | |
| 2 | 1lt2 12352 | . . 3 ⊢ 1 < 2 | |
| 3 | 1, 2 | eqbrtri 5128 | . 2 ⊢ (1 / 1) < 2 |
| 4 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | 2re 12260 | . . 3 ⊢ 2 ∈ ℝ | |
| 6 | 0lt1 11700 | . . 3 ⊢ 0 < 1 | |
| 7 | 2pos 12289 | . . 3 ⊢ 0 < 2 | |
| 8 | 4, 4, 5, 6, 7 | ltdiv23ii 12110 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
| 9 | 3, 8 | mpbi 230 | 1 ⊢ (1 / 2) < 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 (class class class)co 7387 1c1 11069 < clt 11208 / cdiv 11835 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-2 12249 |
| This theorem is referenced by: 2tnp1ge0ge0 13791 absrdbnd 15308 geo2sum 15839 geo2lim 15841 geoihalfsum 15848 efcllem 16043 rpnnen2lem12 16193 ltoddhalfle 16331 halfleoddlt 16332 bitsp1o 16403 elii1 24831 htpycc 24879 pcoval1 24913 pco1 24915 pcocn 24917 pcohtpylem 24919 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevlem 24926 iscmet3lem3 25190 mbfi1fseqlem6 25621 itg2monolem3 25653 aaliou3lem3 26252 cxpcn3lem 26657 lgamgulmlem2 26940 lgsquadlem2 27292 chtppilim 27386 dnizeq0 36463 dnibndlem12 36477 knoppcnlem4 36484 cnndvlem1 36525 iccioo01 37315 cntotbnd 37790 halffl 45294 sumnnodd 45628 stoweidlem5 46003 stoweidlem14 46012 stoweidlem28 46026 dirkertrigeqlem3 46098 dirkercncflem1 46101 dirkercncflem2 46102 ceilhalf1 47335 zofldiv2ALTV 47663 zofldiv2 48520 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |