MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulrcl Structured version   Visualization version   GIF version

Theorem axmulrcl 11052
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11076 be used later. Instead, in most cases use remulcl 11098. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
Assertion
Ref Expression
axmulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Proof of Theorem axmulrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11029 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11029 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 oveq1 7359 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
43eleq1d 2818 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 · ⟨𝑦, 0R⟩) ∈ ℝ))
5 oveq2 7360 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
65eleq1d 2818 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 · 𝐵) ∈ ℝ))
7 mulresr 11037 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
8 mulclsr 10982 . . . 4 ((𝑥R𝑦R) → (𝑥 ·R 𝑦) ∈ R)
9 opelreal 11028 . . . 4 (⟨(𝑥 ·R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 ·R 𝑦) ∈ R)
108, 9sylibr 234 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 ·R 𝑦), 0R⟩ ∈ ℝ)
117, 10eqeltrd 2833 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ∈ ℝ)
121, 2, 4, 6, 112gencl 3480 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581  (class class class)co 7352  Rcnr 10763  0Rc0r 10764   ·R cmr 10768  cr 11012   · cmul 11018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-ni 10770  df-pli 10771  df-mi 10772  df-lti 10773  df-plpq 10806  df-mpq 10807  df-ltpq 10808  df-enq 10809  df-nq 10810  df-erq 10811  df-plq 10812  df-mq 10813  df-1nq 10814  df-rq 10815  df-ltnq 10816  df-np 10879  df-1p 10880  df-plp 10881  df-mp 10882  df-ltp 10883  df-enr 10953  df-nr 10954  df-plr 10955  df-mr 10956  df-0r 10958  df-m1r 10960  df-c 11019  df-r 11023  df-mul 11025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator