MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulrcl Structured version   Visualization version   GIF version

Theorem axmulrcl 10569
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 10593 be used later. Instead, in most cases use remulcl 10615. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
Assertion
Ref Expression
axmulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Proof of Theorem axmulrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10546 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10546 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 oveq1 7146 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
43eleq1d 2877 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 · ⟨𝑦, 0R⟩) ∈ ℝ))
5 oveq2 7147 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
65eleq1d 2877 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 · 𝐵) ∈ ℝ))
7 mulresr 10554 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
8 mulclsr 10499 . . . 4 ((𝑥R𝑦R) → (𝑥 ·R 𝑦) ∈ R)
9 opelreal 10545 . . . 4 (⟨(𝑥 ·R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 ·R 𝑦) ∈ R)
108, 9sylibr 237 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 ·R 𝑦), 0R⟩ ∈ ℝ)
117, 10eqeltrd 2893 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ∈ ℝ)
121, 2, 4, 6, 112gencl 3485 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  cop 4534  (class class class)co 7139  Rcnr 10280  0Rc0r 10281   ·R cmr 10285  cr 10529   · cmul 10535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-ni 10287  df-pli 10288  df-mi 10289  df-lti 10290  df-plpq 10323  df-mpq 10324  df-ltpq 10325  df-enq 10326  df-nq 10327  df-erq 10328  df-plq 10329  df-mq 10330  df-1nq 10331  df-rq 10332  df-ltnq 10333  df-np 10396  df-1p 10397  df-plp 10398  df-mp 10399  df-ltp 10400  df-enr 10470  df-nr 10471  df-plr 10472  df-mr 10473  df-0r 10475  df-m1r 10477  df-c 10536  df-r 10540  df-mul 10542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator