![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axmulrcl | Structured version Visualization version GIF version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11173 be used later. Instead, in most cases use remulcl 11195. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
Ref | Expression |
---|---|
axmulrcl | โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11126 | . 2 โข (๐ด โ โ โ โ๐ฅ โ R โจ๐ฅ, 0Rโฉ = ๐ด) | |
2 | elreal 11126 | . 2 โข (๐ต โ โ โ โ๐ฆ โ R โจ๐ฆ, 0Rโฉ = ๐ต) | |
3 | oveq1 7416 | . . 3 โข (โจ๐ฅ, 0Rโฉ = ๐ด โ (โจ๐ฅ, 0Rโฉ ยท โจ๐ฆ, 0Rโฉ) = (๐ด ยท โจ๐ฆ, 0Rโฉ)) | |
4 | 3 | eleq1d 2819 | . 2 โข (โจ๐ฅ, 0Rโฉ = ๐ด โ ((โจ๐ฅ, 0Rโฉ ยท โจ๐ฆ, 0Rโฉ) โ โ โ (๐ด ยท โจ๐ฆ, 0Rโฉ) โ โ)) |
5 | oveq2 7417 | . . 3 โข (โจ๐ฆ, 0Rโฉ = ๐ต โ (๐ด ยท โจ๐ฆ, 0Rโฉ) = (๐ด ยท ๐ต)) | |
6 | 5 | eleq1d 2819 | . 2 โข (โจ๐ฆ, 0Rโฉ = ๐ต โ ((๐ด ยท โจ๐ฆ, 0Rโฉ) โ โ โ (๐ด ยท ๐ต) โ โ)) |
7 | mulresr 11134 | . . 3 โข ((๐ฅ โ R โง ๐ฆ โ R) โ (โจ๐ฅ, 0Rโฉ ยท โจ๐ฆ, 0Rโฉ) = โจ(๐ฅ ยทR ๐ฆ), 0Rโฉ) | |
8 | mulclsr 11079 | . . . 4 โข ((๐ฅ โ R โง ๐ฆ โ R) โ (๐ฅ ยทR ๐ฆ) โ R) | |
9 | opelreal 11125 | . . . 4 โข (โจ(๐ฅ ยทR ๐ฆ), 0Rโฉ โ โ โ (๐ฅ ยทR ๐ฆ) โ R) | |
10 | 8, 9 | sylibr 233 | . . 3 โข ((๐ฅ โ R โง ๐ฆ โ R) โ โจ(๐ฅ ยทR ๐ฆ), 0Rโฉ โ โ) |
11 | 7, 10 | eqeltrd 2834 | . 2 โข ((๐ฅ โ R โง ๐ฆ โ R) โ (โจ๐ฅ, 0Rโฉ ยท โจ๐ฆ, 0Rโฉ) โ โ) |
12 | 1, 2, 4, 6, 11 | 2gencl 3517 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) โ โ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 โจcop 4635 (class class class)co 7409 Rcnr 10860 0Rc0r 10861 ยทR cmr 10865 โcr 11109 ยท cmul 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-1p 10977 df-plp 10978 df-mp 10979 df-ltp 10980 df-enr 11050 df-nr 11051 df-plr 11052 df-mr 11053 df-0r 11055 df-m1r 11057 df-c 11116 df-r 11120 df-mul 11122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |