MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulrcl Structured version   Visualization version   GIF version

Theorem axmulrcl 10910
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 10934 be used later. Instead, in most cases use remulcl 10956. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
Assertion
Ref Expression
axmulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Proof of Theorem axmulrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10887 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10887 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 oveq1 7282 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
43eleq1d 2823 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 · ⟨𝑦, 0R⟩) ∈ ℝ))
5 oveq2 7283 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
65eleq1d 2823 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 · 𝐵) ∈ ℝ))
7 mulresr 10895 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
8 mulclsr 10840 . . . 4 ((𝑥R𝑦R) → (𝑥 ·R 𝑦) ∈ R)
9 opelreal 10886 . . . 4 (⟨(𝑥 ·R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 ·R 𝑦) ∈ R)
108, 9sylibr 233 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 ·R 𝑦), 0R⟩ ∈ ℝ)
117, 10eqeltrd 2839 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ∈ ℝ)
121, 2, 4, 6, 112gencl 3472 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567  (class class class)co 7275  Rcnr 10621  0Rc0r 10622   ·R cmr 10626  cr 10870   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-1p 10738  df-plp 10739  df-mp 10740  df-ltp 10741  df-enr 10811  df-nr 10812  df-plr 10813  df-mr 10814  df-0r 10816  df-m1r 10818  df-c 10877  df-r 10881  df-mul 10883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator