Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axmulrcl | Structured version Visualization version GIF version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11035 be used later. Instead, in most cases use remulcl 11057. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
Ref | Expression |
---|---|
axmulrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 10988 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 10988 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | oveq1 7344 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
4 | 3 | eleq1d 2821 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 · 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 · 〈𝑦, 0R〉) ∈ ℝ)) |
5 | oveq2 7345 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
6 | 5 | eleq1d 2821 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 · 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 · 𝐵) ∈ ℝ)) |
7 | mulresr 10996 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
8 | mulclsr 10941 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 ·R 𝑦) ∈ R) | |
9 | opelreal 10987 | . . . 4 ⊢ (〈(𝑥 ·R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 ·R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 ·R 𝑦), 0R〉 ∈ ℝ) |
11 | 7, 10 | eqeltrd 2837 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 3481 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4579 (class class class)co 7337 Rcnr 10722 0Rc0r 10723 ·R cmr 10727 ℝcr 10971 · cmul 10977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-omul 8372 df-er 8569 df-ec 8571 df-qs 8575 df-ni 10729 df-pli 10730 df-mi 10731 df-lti 10732 df-plpq 10765 df-mpq 10766 df-ltpq 10767 df-enq 10768 df-nq 10769 df-erq 10770 df-plq 10771 df-mq 10772 df-1nq 10773 df-rq 10774 df-ltnq 10775 df-np 10838 df-1p 10839 df-plp 10840 df-mp 10841 df-ltp 10842 df-enr 10912 df-nr 10913 df-plr 10914 df-mr 10915 df-0r 10917 df-m1r 10919 df-c 10978 df-r 10982 df-mul 10984 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |