![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrf | Structured version Visualization version GIF version |
Description: A Dirichlet character is a function. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | β’ πΊ = (DChrβπ) |
dchrmhm.z | β’ π = (β€/nβ€βπ) |
dchrmhm.b | β’ π· = (BaseβπΊ) |
dchrf.b | β’ π΅ = (Baseβπ) |
dchrf.x | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchrf | β’ (π β π:π΅βΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrf.x | . . 3 β’ (π β π β π·) | |
2 | dchrmhm.g | . . . 4 β’ πΊ = (DChrβπ) | |
3 | dchrmhm.z | . . . 4 β’ π = (β€/nβ€βπ) | |
4 | dchrf.b | . . . 4 β’ π΅ = (Baseβπ) | |
5 | eqid 2737 | . . . 4 β’ (Unitβπ) = (Unitβπ) | |
6 | dchrmhm.b | . . . . . 6 β’ π· = (BaseβπΊ) | |
7 | 2, 6 | dchrrcl 26604 | . . . . 5 β’ (π β π· β π β β) |
8 | 1, 7 | syl 17 | . . . 4 β’ (π β π β β) |
9 | 2, 3, 4, 5, 8, 6 | dchrelbas3 26602 | . . 3 β’ (π β (π β π· β (π:π΅βΆβ β§ (βπ₯ β (Unitβπ)βπ¦ β (Unitβπ)(πβ(π₯(.rβπ)π¦)) = ((πβπ₯) Β· (πβπ¦)) β§ (πβ(1rβπ)) = 1 β§ βπ₯ β π΅ ((πβπ₯) β 0 β π₯ β (Unitβπ)))))) |
10 | 1, 9 | mpbid 231 | . 2 β’ (π β (π:π΅βΆβ β§ (βπ₯ β (Unitβπ)βπ¦ β (Unitβπ)(πβ(π₯(.rβπ)π¦)) = ((πβπ₯) Β· (πβπ¦)) β§ (πβ(1rβπ)) = 1 β§ βπ₯ β π΅ ((πβπ₯) β 0 β π₯ β (Unitβπ))))) |
11 | 10 | simpld 496 | 1 β’ (π β π:π΅βΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2944 βwral 3065 βΆwf 6497 βcfv 6501 (class class class)co 7362 βcc 11056 0cc0 11058 1c1 11059 Β· cmul 11063 βcn 12160 Basecbs 17090 .rcmulr 17141 1rcur 19920 Unitcui 20075 β€/nβ€czn 20919 DChrcdchr 26596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-addf 11137 ax-mulf 11138 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-ec 8657 df-qs 8661 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-inf 9386 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-uz 12771 df-fz 13432 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-starv 17155 df-sca 17156 df-vsca 17157 df-ip 17158 df-tset 17159 df-ple 17160 df-ds 17162 df-unif 17163 df-0g 17330 df-imas 17397 df-qus 17398 df-mgm 18504 df-sgrp 18553 df-mnd 18564 df-mhm 18608 df-grp 18758 df-minusg 18759 df-sbg 18760 df-subg 18932 df-nsg 18933 df-eqg 18934 df-cmn 19571 df-abl 19572 df-mgp 19904 df-ur 19921 df-ring 19973 df-cring 19974 df-oppr 20056 df-dvdsr 20077 df-unit 20078 df-subrg 20236 df-lmod 20340 df-lss 20409 df-lsp 20449 df-sra 20649 df-rgmod 20650 df-lidl 20651 df-rsp 20652 df-2idl 20718 df-cnfld 20813 df-zring 20886 df-zn 20923 df-dchr 26597 |
This theorem is referenced by: dchrzrhcl 26609 dchrmulcl 26613 dchrmulid2 26616 dchrinvcl 26617 dchrabl 26618 dchrfi 26619 dchrghm 26620 dchreq 26622 dchrresb 26623 dchrabs 26624 dchrinv 26625 dchr1re 26627 dchrsum2 26632 dchrsum 26633 sumdchr2 26634 dchrhash 26635 dchr2sum 26637 sum2dchr 26638 dchrisumlem1 26853 rpvmasum2 26876 dchrisum0re 26877 |
Copyright terms: Public domain | W3C validator |