Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrzrhcl | Structured version Visualization version GIF version |
Description: A Dirichlet character takes values in the complex numbers. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
dchrzrhcl | ⊢ (𝜑 → (𝑋‘(𝐿‘𝐴)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrmhm.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrmhm.b | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
4 | eqid 2740 | . . 3 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
5 | dchrzrh1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 1, 2, 3, 4, 5 | dchrf 26386 | . 2 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
7 | 1, 3 | dchrrcl 26384 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
8 | nnnn0 12238 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
10 | dchrelbas4.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
11 | 2, 4, 10 | znzrhfo 20751 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑍)) |
12 | fof 6685 | . . . 4 ⊢ (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) | |
13 | 9, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
14 | dchrzrh1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
15 | 13, 14 | ffvelrnd 6957 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
16 | 6, 15 | ffvelrnd 6957 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘𝐴)) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⟶wf 6427 –onto→wfo 6429 ‘cfv 6431 ℂcc 10868 ℕcn 11971 ℕ0cn0 12231 ℤcz 12317 Basecbs 16908 ℤRHomczrh 20697 ℤ/nℤczn 20700 DChrcdchr 26376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-addf 10949 ax-mulf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-tpos 8031 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-ec 8481 df-qs 8485 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-sup 9177 df-inf 9178 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12435 df-uz 12580 df-fz 13237 df-seq 13718 df-struct 16844 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-mulr 16972 df-starv 16973 df-sca 16974 df-vsca 16975 df-ip 16976 df-tset 16977 df-ple 16978 df-ds 16980 df-unif 16981 df-0g 17148 df-imas 17215 df-qus 17216 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-mhm 18426 df-grp 18576 df-minusg 18577 df-sbg 18578 df-mulg 18697 df-subg 18748 df-nsg 18749 df-eqg 18750 df-ghm 18828 df-cmn 19384 df-abl 19385 df-mgp 19717 df-ur 19734 df-ring 19781 df-cring 19782 df-oppr 19858 df-dvdsr 19879 df-unit 19880 df-rnghom 19955 df-subrg 20018 df-lmod 20121 df-lss 20190 df-lsp 20230 df-sra 20430 df-rgmod 20431 df-lidl 20432 df-rsp 20433 df-2idl 20499 df-cnfld 20594 df-zring 20667 df-zrh 20701 df-zn 20704 df-dchr 26377 |
This theorem is referenced by: dchrisumlem1 26633 dchrisumlem2 26634 dchrisumlem3 26635 dchrisum 26636 dchrmusumlema 26637 dchrmusum2 26638 dchrvmasumlem1 26639 dchrvmasum2lem 26640 dchrvmasum2if 26641 dchrvmasumlem3 26643 dchrvmasumiflem1 26645 dchrvmasumiflem2 26646 dchrvmaeq0 26648 dchrisum0fmul 26650 dchrisum0lema 26658 dchrisum0lem1b 26659 dchrisum0lem1 26660 dchrisum0lem2a 26661 dchrisum0lem2 26662 dchrisum0lem3 26663 dchrisum0 26664 dchrmusumlem 26666 dchrvmasumlem 26667 |
Copyright terms: Public domain | W3C validator |