MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrzrhcl Structured version   Visualization version   GIF version

Theorem dchrzrhcl 25813
Description: A Dirichlet character takes values in the complex numbers. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
dchrzrh1.x (𝜑𝑋𝐷)
dchrzrh1.a (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
dchrzrhcl (𝜑 → (𝑋‘(𝐿𝐴)) ∈ ℂ)

Proof of Theorem dchrzrhcl
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 eqid 2819 . . 3 (Base‘𝑍) = (Base‘𝑍)
5 dchrzrh1.x . . 3 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 25810 . 2 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
71, 3dchrrcl 25808 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
8 nnnn0 11896 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
95, 7, 83syl 18 . . . 4 (𝜑𝑁 ∈ ℕ0)
10 dchrelbas4.l . . . . 5 𝐿 = (ℤRHom‘𝑍)
112, 4, 10znzrhfo 20686 . . . 4 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
12 fof 6583 . . . 4 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
139, 11, 123syl 18 . . 3 (𝜑𝐿:ℤ⟶(Base‘𝑍))
14 dchrzrh1.a . . 3 (𝜑𝐴 ∈ ℤ)
1513, 14ffvelrnd 6845 . 2 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑍))
166, 15ffvelrnd 6845 1 (𝜑 → (𝑋‘(𝐿𝐴)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1531  wcel 2108  wf 6344  ontowfo 6346  cfv 6348  cc 10527  cn 11630  0cn0 11889  cz 11973  Basecbs 16475  ℤRHomczrh 20639  ℤ/nczn 20642  DChrcdchr 25800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-ec 8283  df-qs 8287  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-seq 13362  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-rnghom 19459  df-subrg 19525  df-lmod 19628  df-lss 19696  df-lsp 19736  df-sra 19936  df-rgmod 19937  df-lidl 19938  df-rsp 19939  df-2idl 19997  df-cnfld 20538  df-zring 20610  df-zrh 20643  df-zn 20646  df-dchr 25801
This theorem is referenced by:  dchrisumlem1  26057  dchrisumlem2  26058  dchrisumlem3  26059  dchrisum  26060  dchrmusumlema  26061  dchrmusum2  26062  dchrvmasumlem1  26063  dchrvmasum2lem  26064  dchrvmasum2if  26065  dchrvmasumlem3  26067  dchrvmasumiflem1  26069  dchrvmasumiflem2  26070  dchrvmaeq0  26072  dchrisum0fmul  26074  dchrisum0lema  26082  dchrisum0lem1b  26083  dchrisum0lem1  26084  dchrisum0lem2a  26085  dchrisum0lem2  26086  dchrisum0lem3  26087  dchrisum0  26088  dchrmusumlem  26090  dchrvmasumlem  26091
  Copyright terms: Public domain W3C validator