![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdeglem2 | Structured version Visualization version GIF version |
Description: Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
tdeglem2 | ⊢ (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . . . . . . 7 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → ℎ:{∅}⟶ℕ0) | |
2 | 1 | feqmptd 6990 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → ℎ = (𝑥 ∈ {∅} ↦ (ℎ‘𝑥))) |
3 | 2 | oveq2d 7464 | . . . . 5 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → (ℂfld Σg ℎ) = (ℂfld Σg (𝑥 ∈ {∅} ↦ (ℎ‘𝑥)))) |
4 | cnring 21426 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
5 | ringmnd 20270 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
6 | 4, 5 | mp1i 13 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → ℂfld ∈ Mnd) |
7 | 0ex 5325 | . . . . . . 7 ⊢ ∅ ∈ V | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → ∅ ∈ V) |
9 | 7 | snid 4684 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
10 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((ℎ:{∅}⟶ℕ0 ∧ ∅ ∈ {∅}) → (ℎ‘∅) ∈ ℕ0) | |
11 | 1, 9, 10 | sylancl 585 | . . . . . . 7 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → (ℎ‘∅) ∈ ℕ0) |
12 | 11 | nn0cnd 12615 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → (ℎ‘∅) ∈ ℂ) |
13 | cnfldbas 21391 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
14 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = ∅ → (ℎ‘𝑥) = (ℎ‘∅)) | |
15 | 13, 14 | gsumsn 19996 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ ∅ ∈ V ∧ (ℎ‘∅) ∈ ℂ) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (ℎ‘𝑥))) = (ℎ‘∅)) |
16 | 6, 8, 12, 15 | syl3anc 1371 | . . . . 5 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (ℎ‘𝑥))) = (ℎ‘∅)) |
17 | 3, 16 | eqtrd 2780 | . . . 4 ⊢ (ℎ ∈ (ℕ0 ↑m {∅}) → (ℂfld Σg ℎ) = (ℎ‘∅)) |
18 | df1o2 8529 | . . . . 5 ⊢ 1o = {∅} | |
19 | 18 | oveq2i 7459 | . . . 4 ⊢ (ℕ0 ↑m 1o) = (ℕ0 ↑m {∅}) |
20 | 17, 19 | eleq2s 2862 | . . 3 ⊢ (ℎ ∈ (ℕ0 ↑m 1o) → (ℂfld Σg ℎ) = (ℎ‘∅)) |
21 | 20 | eqcomd 2746 | . 2 ⊢ (ℎ ∈ (ℕ0 ↑m 1o) → (ℎ‘∅) = (ℂfld Σg ℎ)) |
22 | 21 | mpteq2ia 5269 | 1 ⊢ (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 ↑m cmap 8884 ℂcc 11182 ℕ0cn0 12553 Σg cgsu 17500 Mndcmnd 18772 Ringcrg 20260 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-mgp 20162 df-ring 20262 df-cring 20263 df-cnfld 21388 |
This theorem is referenced by: deg1ldg 26151 deg1leb 26154 deg1val 26155 |
Copyright terms: Public domain | W3C validator |