MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem2 Structured version   Visualization version   GIF version

Theorem tdeglem2 24582
Description: Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
tdeglem2 ( ∈ (ℕ0m 1o) ↦ (‘∅)) = ( ∈ (ℕ0m 1o) ↦ (ℂfld Σg ))

Proof of Theorem tdeglem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8417 . . . . . . 7 ( ∈ (ℕ0m {∅}) → :{∅}⟶ℕ0)
21feqmptd 6726 . . . . . 6 ( ∈ (ℕ0m {∅}) → = (𝑥 ∈ {∅} ↦ (𝑥)))
32oveq2d 7161 . . . . 5 ( ∈ (ℕ0m {∅}) → (ℂfld Σg ) = (ℂfld Σg (𝑥 ∈ {∅} ↦ (𝑥))))
4 cnring 20495 . . . . . . 7 fld ∈ Ring
5 ringmnd 19235 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
64, 5mp1i 13 . . . . . 6 ( ∈ (ℕ0m {∅}) → ℂfld ∈ Mnd)
7 0ex 5202 . . . . . . 7 ∅ ∈ V
87a1i 11 . . . . . 6 ( ∈ (ℕ0m {∅}) → ∅ ∈ V)
97snid 4591 . . . . . . . 8 ∅ ∈ {∅}
10 ffvelrn 6841 . . . . . . . 8 ((:{∅}⟶ℕ0 ∧ ∅ ∈ {∅}) → (‘∅) ∈ ℕ0)
111, 9, 10sylancl 586 . . . . . . 7 ( ∈ (ℕ0m {∅}) → (‘∅) ∈ ℕ0)
1211nn0cnd 11945 . . . . . 6 ( ∈ (ℕ0m {∅}) → (‘∅) ∈ ℂ)
13 cnfldbas 20477 . . . . . . 7 ℂ = (Base‘ℂfld)
14 fveq2 6663 . . . . . . 7 (𝑥 = ∅ → (𝑥) = (‘∅))
1513, 14gsumsn 19003 . . . . . 6 ((ℂfld ∈ Mnd ∧ ∅ ∈ V ∧ (‘∅) ∈ ℂ) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (𝑥))) = (‘∅))
166, 8, 12, 15syl3anc 1363 . . . . 5 ( ∈ (ℕ0m {∅}) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (𝑥))) = (‘∅))
173, 16eqtrd 2853 . . . 4 ( ∈ (ℕ0m {∅}) → (ℂfld Σg ) = (‘∅))
18 df1o2 8105 . . . . 5 1o = {∅}
1918oveq2i 7156 . . . 4 (ℕ0m 1o) = (ℕ0m {∅})
2017, 19eleq2s 2928 . . 3 ( ∈ (ℕ0m 1o) → (ℂfld Σg ) = (‘∅))
2120eqcomd 2824 . 2 ( ∈ (ℕ0m 1o) → (‘∅) = (ℂfld Σg ))
2221mpteq2ia 5148 1 ( ∈ (ℕ0m 1o) ↦ (‘∅)) = ( ∈ (ℕ0m 1o) ↦ (ℂfld Σg ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1528  wcel 2105  Vcvv 3492  c0 4288  {csn 4557  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  1oc1o 8084  m cmap 8395  cc 10523  0cn0 11885   Σg cgsu 16702  Mndcmnd 17899  Ringcrg 19226  fldccnfld 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-gsum 16704  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-mgp 19169  df-ring 19228  df-cring 19229  df-cnfld 20474
This theorem is referenced by:  deg1ldg  24613  deg1leb  24616  deg1val  24617
  Copyright terms: Public domain W3C validator