MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem2 Structured version   Visualization version   GIF version

Theorem tdeglem2 25578
Description: Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
tdeglem2 ( ∈ (ℕ0m 1o) ↦ (‘∅)) = ( ∈ (ℕ0m 1o) ↦ (ℂfld Σg ))

Proof of Theorem tdeglem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8842 . . . . . . 7 ( ∈ (ℕ0m {∅}) → :{∅}⟶ℕ0)
21feqmptd 6960 . . . . . 6 ( ∈ (ℕ0m {∅}) → = (𝑥 ∈ {∅} ↦ (𝑥)))
32oveq2d 7424 . . . . 5 ( ∈ (ℕ0m {∅}) → (ℂfld Σg ) = (ℂfld Σg (𝑥 ∈ {∅} ↦ (𝑥))))
4 cnring 20966 . . . . . . 7 fld ∈ Ring
5 ringmnd 20065 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
64, 5mp1i 13 . . . . . 6 ( ∈ (ℕ0m {∅}) → ℂfld ∈ Mnd)
7 0ex 5307 . . . . . . 7 ∅ ∈ V
87a1i 11 . . . . . 6 ( ∈ (ℕ0m {∅}) → ∅ ∈ V)
97snid 4664 . . . . . . . 8 ∅ ∈ {∅}
10 ffvelcdm 7083 . . . . . . . 8 ((:{∅}⟶ℕ0 ∧ ∅ ∈ {∅}) → (‘∅) ∈ ℕ0)
111, 9, 10sylancl 586 . . . . . . 7 ( ∈ (ℕ0m {∅}) → (‘∅) ∈ ℕ0)
1211nn0cnd 12533 . . . . . 6 ( ∈ (ℕ0m {∅}) → (‘∅) ∈ ℂ)
13 cnfldbas 20947 . . . . . . 7 ℂ = (Base‘ℂfld)
14 fveq2 6891 . . . . . . 7 (𝑥 = ∅ → (𝑥) = (‘∅))
1513, 14gsumsn 19821 . . . . . 6 ((ℂfld ∈ Mnd ∧ ∅ ∈ V ∧ (‘∅) ∈ ℂ) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (𝑥))) = (‘∅))
166, 8, 12, 15syl3anc 1371 . . . . 5 ( ∈ (ℕ0m {∅}) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (𝑥))) = (‘∅))
173, 16eqtrd 2772 . . . 4 ( ∈ (ℕ0m {∅}) → (ℂfld Σg ) = (‘∅))
18 df1o2 8472 . . . . 5 1o = {∅}
1918oveq2i 7419 . . . 4 (ℕ0m 1o) = (ℕ0m {∅})
2017, 19eleq2s 2851 . . 3 ( ∈ (ℕ0m 1o) → (ℂfld Σg ) = (‘∅))
2120eqcomd 2738 . 2 ( ∈ (ℕ0m 1o) → (‘∅) = (ℂfld Σg ))
2221mpteq2ia 5251 1 ( ∈ (ℕ0m 1o) ↦ (‘∅)) = ( ∈ (ℕ0m 1o) ↦ (ℂfld Σg ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  {csn 4628  cmpt 5231  wf 6539  cfv 6543  (class class class)co 7408  1oc1o 8458  m cmap 8819  cc 11107  0cn0 12471   Σg cgsu 17385  Mndcmnd 18624  Ringcrg 20055  fldccnfld 20943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17386  df-gsum 17387  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-mulg 18950  df-cntz 19180  df-cmn 19649  df-mgp 19987  df-ring 20057  df-cring 20058  df-cnfld 20944
This theorem is referenced by:  deg1ldg  25609  deg1leb  25612  deg1val  25613
  Copyright terms: Public domain W3C validator