![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashen1 | Structured version Visualization version GIF version |
Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) |
Ref | Expression |
---|---|
hashen1 | ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5308 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | hashsng 14329 | . . . . . 6 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (♯‘{∅}) = 1 |
4 | 3 | eqcomi 2742 | . . . 4 ⊢ 1 = (♯‘{∅}) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 1 = (♯‘{∅})) |
6 | 5 | eqeq2d 2744 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅}))) |
7 | simpr 486 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → (♯‘𝐴) = (♯‘{∅})) | |
8 | 1nn0 12488 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
9 | 3, 8 | eqeltri 2830 | . . . . . . . 8 ⊢ (♯‘{∅}) ∈ ℕ0 |
10 | hashvnfin 14320 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘{∅}) ∈ ℕ0) → ((♯‘𝐴) = (♯‘{∅}) → 𝐴 ∈ Fin)) | |
11 | 9, 10 | mpan2 690 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = (♯‘{∅}) → 𝐴 ∈ Fin)) |
12 | 11 | imp 408 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → 𝐴 ∈ Fin) |
13 | snfi 9044 | . . . . . 6 ⊢ {∅} ∈ Fin | |
14 | hashen 14307 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) | |
15 | 12, 13, 14 | sylancl 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) |
16 | 7, 15 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → 𝐴 ≈ {∅}) |
17 | 16 | ex 414 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = (♯‘{∅}) → 𝐴 ≈ {∅})) |
18 | hasheni 14308 | . . 3 ⊢ (𝐴 ≈ {∅} → (♯‘𝐴) = (♯‘{∅})) | |
19 | 17, 18 | impbid1 224 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) |
20 | df1o2 8473 | . . . . 5 ⊢ 1o = {∅} | |
21 | 20 | eqcomi 2742 | . . . 4 ⊢ {∅} = 1o |
22 | 21 | breq2i 5157 | . . 3 ⊢ (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o) |
23 | 22 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)) |
24 | 6, 19, 23 | 3bitrd 305 | 1 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {csn 4629 class class class wbr 5149 ‘cfv 6544 1oc1o 8459 ≈ cen 8936 Fincfn 8939 1c1 11111 ℕ0cn0 12472 ♯chash 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: hash1elsn 14331 euhash1 14380 0ring 20303 0ring01eqbi 20307 lfuhgr3 34110 spthcycl 34120 |
Copyright terms: Public domain | W3C validator |