MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashen1 Structured version   Visualization version   GIF version

Theorem hashen1 14277
Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
hashen1 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))

Proof of Theorem hashen1
StepHypRef Expression
1 0ex 5269 . . . . . 6 ∅ ∈ V
2 hashsng 14276 . . . . . 6 (∅ ∈ V → (♯‘{∅}) = 1)
31, 2ax-mp 5 . . . . 5 (♯‘{∅}) = 1
43eqcomi 2746 . . . 4 1 = (♯‘{∅})
54a1i 11 . . 3 (𝐴𝑉 → 1 = (♯‘{∅}))
65eqeq2d 2748 . 2 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅})))
7 simpr 486 . . . . 5 ((𝐴𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → (♯‘𝐴) = (♯‘{∅}))
8 1nn0 12436 . . . . . . . . 9 1 ∈ ℕ0
93, 8eqeltri 2834 . . . . . . . 8 (♯‘{∅}) ∈ ℕ0
10 hashvnfin 14267 . . . . . . . 8 ((𝐴𝑉 ∧ (♯‘{∅}) ∈ ℕ0) → ((♯‘𝐴) = (♯‘{∅}) → 𝐴 ∈ Fin))
119, 10mpan2 690 . . . . . . 7 (𝐴𝑉 → ((♯‘𝐴) = (♯‘{∅}) → 𝐴 ∈ Fin))
1211imp 408 . . . . . 6 ((𝐴𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → 𝐴 ∈ Fin)
13 snfi 8995 . . . . . 6 {∅} ∈ Fin
14 hashen 14254 . . . . . 6 ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
1512, 13, 14sylancl 587 . . . . 5 ((𝐴𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
167, 15mpbid 231 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) = (♯‘{∅})) → 𝐴 ≈ {∅})
1716ex 414 . . 3 (𝐴𝑉 → ((♯‘𝐴) = (♯‘{∅}) → 𝐴 ≈ {∅}))
18 hasheni 14255 . . 3 (𝐴 ≈ {∅} → (♯‘𝐴) = (♯‘{∅}))
1917, 18impbid1 224 . 2 (𝐴𝑉 → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
20 df1o2 8424 . . . . 5 1o = {∅}
2120eqcomi 2746 . . . 4 {∅} = 1o
2221breq2i 5118 . . 3 (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)
2322a1i 11 . 2 (𝐴𝑉 → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o))
246, 19, 233bitrd 305 1 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3448  c0 4287  {csn 4591   class class class wbr 5110  cfv 6501  1oc1o 8410  cen 8887  Fincfn 8890  1c1 11059  0cn0 12420  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  hash1elsn  14278  euhash1  14327  0ring  20756  0ring01eqbi  20759  lfuhgr3  33753  spthcycl  33763
  Copyright terms: Public domain W3C validator