![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofipsgn | Structured version Visualization version GIF version |
Description: Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
cofipsgn.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
cofipsgn.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
cofipsgn | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | cofipsgn.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | eqid 2726 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} | |
4 | cofipsgn.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
5 | 1, 2, 3, 4 | psgnfn 19419 | . 2 ⊢ 𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
6 | difeq1 4110 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑝 ∖ I ) = (𝑄 ∖ I )) | |
7 | 6 | dmeqd 5898 | . . . 4 ⊢ (𝑝 = 𝑄 → dom (𝑝 ∖ I ) = dom (𝑄 ∖ I )) |
8 | 7 | eleq1d 2812 | . . 3 ⊢ (𝑝 = 𝑄 → (dom (𝑝 ∖ I ) ∈ Fin ↔ dom (𝑄 ∖ I ) ∈ Fin)) |
9 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ 𝑃) | |
10 | 1, 2 | sygbasnfpfi 19430 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
11 | 8, 9, 10 | elrabd 3680 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
12 | fvco2 6981 | . 2 ⊢ ((𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} ∧ 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | |
13 | 5, 11, 12 | sylancr 586 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 ∖ cdif 3940 I cid 5566 dom cdm 5669 ∘ ccom 5673 Fn wfn 6531 ‘cfv 6536 Fincfn 8938 Basecbs 17151 SymGrpcsymg 19284 pmSgncpsgn 19407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-hash 14294 df-word 14469 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-tset 17223 df-efmnd 18792 df-symg 19285 df-psgn 19409 |
This theorem is referenced by: zrhcopsgnelbas 21484 copsgndif 21492 mdetfval1 22443 mdetpmtr1 33333 mdetpmtr12 33335 |
Copyright terms: Public domain | W3C validator |