Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cofipsgn | Structured version Visualization version GIF version |
Description: Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
cofipsgn.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
cofipsgn.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
cofipsgn | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | cofipsgn.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | eqid 2739 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} | |
4 | cofipsgn.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
5 | 1, 2, 3, 4 | psgnfn 19090 | . 2 ⊢ 𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
6 | difeq1 4054 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑝 ∖ I ) = (𝑄 ∖ I )) | |
7 | 6 | dmeqd 5811 | . . . 4 ⊢ (𝑝 = 𝑄 → dom (𝑝 ∖ I ) = dom (𝑄 ∖ I )) |
8 | 7 | eleq1d 2824 | . . 3 ⊢ (𝑝 = 𝑄 → (dom (𝑝 ∖ I ) ∈ Fin ↔ dom (𝑄 ∖ I ) ∈ Fin)) |
9 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ 𝑃) | |
10 | 1, 2 | sygbasnfpfi 19101 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
11 | 8, 9, 10 | elrabd 3627 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
12 | fvco2 6859 | . 2 ⊢ ((𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} ∧ 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | |
13 | 5, 11, 12 | sylancr 586 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 ∖ cdif 3888 I cid 5487 dom cdm 5588 ∘ ccom 5592 Fn wfn 6425 ‘cfv 6430 Fincfn 8707 Basecbs 16893 SymGrpcsymg 18955 pmSgncpsgn 19078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-tset 16962 df-efmnd 18489 df-symg 18956 df-psgn 19080 |
This theorem is referenced by: zrhcopsgnelbas 20781 copsgndif 20789 mdetfval1 21720 mdetpmtr1 31752 mdetpmtr12 31754 |
Copyright terms: Public domain | W3C validator |