![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofipsgn | Structured version Visualization version GIF version |
Description: Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
cofipsgn.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
cofipsgn.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
cofipsgn | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | cofipsgn.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | eqid 2728 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} | |
4 | cofipsgn.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
5 | 1, 2, 3, 4 | psgnfn 19456 | . 2 ⊢ 𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
6 | difeq1 4113 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑝 ∖ I ) = (𝑄 ∖ I )) | |
7 | 6 | dmeqd 5908 | . . . 4 ⊢ (𝑝 = 𝑄 → dom (𝑝 ∖ I ) = dom (𝑄 ∖ I )) |
8 | 7 | eleq1d 2814 | . . 3 ⊢ (𝑝 = 𝑄 → (dom (𝑝 ∖ I ) ∈ Fin ↔ dom (𝑄 ∖ I ) ∈ Fin)) |
9 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ 𝑃) | |
10 | 1, 2 | sygbasnfpfi 19467 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
11 | 8, 9, 10 | elrabd 3684 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
12 | fvco2 6995 | . 2 ⊢ ((𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} ∧ 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | |
13 | 5, 11, 12 | sylancr 586 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3429 ∖ cdif 3944 I cid 5575 dom cdm 5678 ∘ ccom 5682 Fn wfn 6543 ‘cfv 6548 Fincfn 8964 Basecbs 17180 SymGrpcsymg 19321 pmSgncpsgn 19444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-tset 17252 df-efmnd 18821 df-symg 19322 df-psgn 19446 |
This theorem is referenced by: zrhcopsgnelbas 21527 copsgndif 21535 mdetfval1 22505 mdetpmtr1 33424 mdetpmtr12 33426 |
Copyright terms: Public domain | W3C validator |