MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofipsgn Structured version   Visualization version   GIF version

Theorem cofipsgn 20779
Description: Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
cofipsgn.p 𝑃 = (Base‘(SymGrp‘𝑁))
cofipsgn.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
cofipsgn ((𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))

Proof of Theorem cofipsgn
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . 3 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 cofipsgn.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
3 eqid 2739 . . 3 {𝑝𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}
4 cofipsgn.s . . 3 𝑆 = (pmSgn‘𝑁)
51, 2, 3, 4psgnfn 19090 . 2 𝑆 Fn {𝑝𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}
6 difeq1 4054 . . . . 5 (𝑝 = 𝑄 → (𝑝 ∖ I ) = (𝑄 ∖ I ))
76dmeqd 5811 . . . 4 (𝑝 = 𝑄 → dom (𝑝 ∖ I ) = dom (𝑄 ∖ I ))
87eleq1d 2824 . . 3 (𝑝 = 𝑄 → (dom (𝑝 ∖ I ) ∈ Fin ↔ dom (𝑄 ∖ I ) ∈ Fin))
9 simpr 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → 𝑄𝑃)
101, 2sygbasnfpfi 19101 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → dom (𝑄 ∖ I ) ∈ Fin)
118, 9, 10elrabd 3627 . 2 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → 𝑄 ∈ {𝑝𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin})
12 fvco2 6859 . 2 ((𝑆 Fn {𝑝𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} ∧ 𝑄 ∈ {𝑝𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
135, 11, 12sylancr 586 1 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  {crab 3069  cdif 3888   I cid 5487  dom cdm 5588  ccom 5592   Fn wfn 6425  cfv 6430  Fincfn 8707  Basecbs 16893  SymGrpcsymg 18955  pmSgncpsgn 19078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-tset 16962  df-efmnd 18489  df-symg 18956  df-psgn 19080
This theorem is referenced by:  zrhcopsgnelbas  20781  copsgndif  20789  mdetfval1  21720  mdetpmtr1  31752  mdetpmtr12  31754
  Copyright terms: Public domain W3C validator