| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblsplit | Structured version Visualization version GIF version | ||
| Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblsplit | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11220 | . . . 4 ⊢ ℝ ∈ V | |
| 2 | 1 | elpw2 5304 | . . 3 ⊢ (𝐵 ∈ 𝒫 ℝ ↔ 𝐵 ⊆ ℝ) |
| 3 | ismbl 25479 | . . . 4 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
| 4 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (vol*‘𝑥) = (vol*‘𝐵)) | |
| 5 | 4 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ)) |
| 6 | ineq1 4188 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
| 7 | 6 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (vol*‘(𝑥 ∩ 𝐴)) = (vol*‘(𝐵 ∩ 𝐴))) |
| 8 | difeq1 4094 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∖ 𝐴) = (𝐵 ∖ 𝐴)) | |
| 9 | 8 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (vol*‘(𝑥 ∖ 𝐴)) = (vol*‘(𝐵 ∖ 𝐴))) |
| 10 | 7, 9 | oveq12d 7423 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
| 11 | 4, 10 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴))))) |
| 12 | 5, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
| 13 | 12 | rspccv 3598 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
| 14 | 3, 13 | simplbiim 504 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
| 15 | 2, 14 | biimtrrid 243 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐵 ⊆ ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
| 16 | 15 | 3imp 1110 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 + caddc 11132 vol*covol 25415 volcvol 25416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-ovol 25417 df-vol 25418 |
| This theorem is referenced by: cmmbl 25487 nulmbl2 25489 unmbl 25490 shftmbl 25491 volun 25498 voliunlem1 25503 uniioombllem4 25539 uniioombllem5 25540 mblfinlem3 37683 mblfinlem4 37684 |
| Copyright terms: Public domain | W3C validator |