![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblsplit | Structured version Visualization version GIF version |
Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblsplit | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 11236 | . . . 4 ⊢ ℝ ∈ V | |
2 | 1 | elpw2 5348 | . . 3 ⊢ (𝐵 ∈ 𝒫 ℝ ↔ 𝐵 ⊆ ℝ) |
3 | ismbl 25516 | . . . 4 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
4 | fveq2 6896 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (vol*‘𝑥) = (vol*‘𝐵)) | |
5 | 4 | eleq1d 2810 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ)) |
6 | ineq1 4203 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
7 | 6 | fveq2d 6900 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (vol*‘(𝑥 ∩ 𝐴)) = (vol*‘(𝐵 ∩ 𝐴))) |
8 | difeq1 4111 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∖ 𝐴) = (𝐵 ∖ 𝐴)) | |
9 | 8 | fveq2d 6900 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (vol*‘(𝑥 ∖ 𝐴)) = (vol*‘(𝐵 ∖ 𝐴))) |
10 | 7, 9 | oveq12d 7437 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
11 | 4, 10 | eqeq12d 2741 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴))))) |
12 | 5, 11 | imbi12d 343 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
13 | 12 | rspccv 3603 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
14 | 3, 13 | simplbiim 503 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
15 | 2, 14 | biimtrrid 242 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐵 ⊆ ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
16 | 15 | 3imp 1108 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4604 dom cdm 5678 ‘cfv 6549 (class class class)co 7419 ℝcr 11144 + caddc 11148 vol*covol 25452 volcvol 25453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9472 df-inf 9473 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-ico 13370 df-icc 13371 df-fz 13525 df-seq 14008 df-exp 14068 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-ovol 25454 df-vol 25455 |
This theorem is referenced by: cmmbl 25524 nulmbl2 25526 unmbl 25527 shftmbl 25528 volun 25535 voliunlem1 25540 uniioombllem4 25576 uniioombllem5 25577 mblfinlem3 37283 mblfinlem4 37284 |
Copyright terms: Public domain | W3C validator |