MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mblsplit Structured version   Visualization version   GIF version

Theorem mblsplit 25449
Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
mblsplit ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))

Proof of Theorem mblsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reex 11119 . . . 4 ℝ ∈ V
21elpw2 5276 . . 3 (𝐵 ∈ 𝒫 ℝ ↔ 𝐵 ⊆ ℝ)
3 ismbl 25443 . . . 4 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
4 fveq2 6826 . . . . . . 7 (𝑥 = 𝐵 → (vol*‘𝑥) = (vol*‘𝐵))
54eleq1d 2813 . . . . . 6 (𝑥 = 𝐵 → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
6 ineq1 4166 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
76fveq2d 6830 . . . . . . . 8 (𝑥 = 𝐵 → (vol*‘(𝑥𝐴)) = (vol*‘(𝐵𝐴)))
8 difeq1 4072 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
98fveq2d 6830 . . . . . . . 8 (𝑥 = 𝐵 → (vol*‘(𝑥𝐴)) = (vol*‘(𝐵𝐴)))
107, 9oveq12d 7371 . . . . . . 7 (𝑥 = 𝐵 → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))
114, 10eqeq12d 2745 . . . . . 6 (𝑥 = 𝐵 → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴)))))
125, 11imbi12d 344 . . . . 5 (𝑥 = 𝐵 → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
1312rspccv 3576 . . . 4 (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
143, 13simplbiim 504 . . 3 (𝐴 ∈ dom vol → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
152, 14biimtrrid 243 . 2 (𝐴 ∈ dom vol → (𝐵 ⊆ ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
16153imp 1110 1 ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3902  cin 3904  wss 3905  𝒫 cpw 4553  dom cdm 5623  cfv 6486  (class class class)co 7353  cr 11027   + caddc 11031  vol*covol 25379  volcvol 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-ovol 25381  df-vol 25382
This theorem is referenced by:  cmmbl  25451  nulmbl2  25453  unmbl  25454  shftmbl  25455  volun  25462  voliunlem1  25467  uniioombllem4  25503  uniioombllem5  25504  mblfinlem3  37638  mblfinlem4  37639
  Copyright terms: Public domain W3C validator