![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divassi | Structured version Visualization version GIF version |
Description: An associative law for division. (Contributed by NM, 15-Feb-1995.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divmulz.3 | ⊢ 𝐶 ∈ ℂ |
divass.4 | ⊢ 𝐶 ≠ 0 |
Ref | Expression |
---|---|
divassi | ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divass.4 | . 2 ⊢ 𝐶 ≠ 0 | |
2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | divmulz.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
5 | 2, 3, 4 | divasszi 12040 | . 2 ⊢ (𝐶 ≠ 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2103 ≠ wne 2942 (class class class)co 7445 ℂcc 11178 0cc0 11180 · cmul 11185 / cdiv 11943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-po 5611 df-so 5612 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 |
This theorem is referenced by: cos2bnd 16230 6lcm4e12 16657 sincos6thpi 26567 cxpsqrt 26754 1cubrlem 26893 efiatan 26964 log2cnv 26996 log2ublem1 26998 birthday 27006 bclbnd 27333 bposlem8 27344 ex-lcm 30481 dpmul4 32870 ballotth 34494 hgt750lem 34620 quad3 35630 cxpi11d 42268 areaquad 43117 41prothprmlem1 47423 |
Copyright terms: Public domain | W3C validator |