![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprmlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for 41prothprm 46882. (Contributed by AV, 4-Jul-2020.) |
Ref | Expression |
---|---|
41prothprm.p | ⊢ 𝑃 = ;41 |
Ref | Expression |
---|---|
41prothprmlem1 | ⊢ ((𝑃 − 1) / 2) = ;20 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 41prothprm.p | . . . . . 6 ⊢ 𝑃 = ;41 | |
2 | dfdec10 12702 | . . . . . 6 ⊢ ;41 = ((;10 · 4) + 1) | |
3 | 1, 2 | eqtri 2755 | . . . . 5 ⊢ 𝑃 = ((;10 · 4) + 1) |
4 | 3 | oveq1i 7424 | . . . 4 ⊢ (𝑃 − 1) = (((;10 · 4) + 1) − 1) |
5 | 10nn 12715 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
6 | 5 | nncni 12244 | . . . . . 6 ⊢ ;10 ∈ ℂ |
7 | 4cn 12319 | . . . . . 6 ⊢ 4 ∈ ℂ | |
8 | 6, 7 | mulcli 11243 | . . . . 5 ⊢ (;10 · 4) ∈ ℂ |
9 | pncan1 11660 | . . . . 5 ⊢ ((;10 · 4) ∈ ℂ → (((;10 · 4) + 1) − 1) = (;10 · 4)) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (((;10 · 4) + 1) − 1) = (;10 · 4) |
11 | 4, 10 | eqtri 2755 | . . 3 ⊢ (𝑃 − 1) = (;10 · 4) |
12 | 11 | oveq1i 7424 | . 2 ⊢ ((𝑃 − 1) / 2) = ((;10 · 4) / 2) |
13 | 2cn 12309 | . . . 4 ⊢ 2 ∈ ℂ | |
14 | 2ne0 12338 | . . . 4 ⊢ 2 ≠ 0 | |
15 | 6, 7, 13, 14 | divassi 11992 | . . 3 ⊢ ((;10 · 4) / 2) = (;10 · (4 / 2)) |
16 | 4d2e2 12404 | . . . . 5 ⊢ (4 / 2) = 2 | |
17 | 16 | oveq2i 7425 | . . . 4 ⊢ (;10 · (4 / 2)) = (;10 · 2) |
18 | 2nn0 12511 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
19 | 18 | dec0u 12720 | . . . 4 ⊢ (;10 · 2) = ;20 |
20 | 17, 19 | eqtri 2755 | . . 3 ⊢ (;10 · (4 / 2)) = ;20 |
21 | 15, 20 | eqtri 2755 | . 2 ⊢ ((;10 · 4) / 2) = ;20 |
22 | 12, 21 | eqtri 2755 | 1 ⊢ ((𝑃 − 1) / 2) = ;20 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11128 0cc0 11130 1c1 11131 + caddc 11133 · cmul 11135 − cmin 11466 / cdiv 11893 2c2 12289 4c4 12291 ;cdc 12699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-dec 12700 |
This theorem is referenced by: 41prothprmlem2 46881 |
Copyright terms: Public domain | W3C validator |