![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divscan2d | Structured version Visualization version GIF version |
Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
Ref | Expression |
---|---|
divscan2d.1 | โข (๐ โ ๐ด โ No ) |
divscan2d.2 | โข (๐ โ ๐ต โ No ) |
divscan2d.3 | โข (๐ โ ๐ต โ 0s ) |
Ref | Expression |
---|---|
divscan2d | โข (๐ โ (๐ต ยทs (๐ด /su ๐ต)) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divscan2d.1 | . 2 โข (๐ โ ๐ด โ No ) | |
2 | divscan2d.2 | . 2 โข (๐ โ ๐ต โ No ) | |
3 | divscan2d.3 | . 2 โข (๐ โ ๐ต โ 0s ) | |
4 | 2, 3 | recsexd 28134 | . 2 โข (๐ โ โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) |
5 | 1, 2, 3, 4 | divscan2wd 28112 | 1 โข (๐ โ (๐ต ยทs (๐ด /su ๐ต)) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 โ wne 2930 (class class class)co 7414 No csur 27589 0s c0s 27771 ยทs cmuls 28022 /su cdivs 28103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-dc 10467 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-ot 4631 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-oadd 8487 df-nadd 8683 df-no 27592 df-slt 27593 df-bday 27594 df-sle 27694 df-sslt 27730 df-scut 27732 df-0s 27773 df-1s 27774 df-made 27790 df-old 27791 df-left 27793 df-right 27794 df-norec 27871 df-norec2 27882 df-adds 27893 df-negs 27950 df-subs 27951 df-muls 28023 df-divs 28104 |
This theorem is referenced by: divmuldivsd 28146 |
Copyright terms: Public domain | W3C validator |