![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsrecd | Structured version Visualization version GIF version |
Description: Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025.) |
Ref | Expression |
---|---|
divsrecd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
divsrecd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
divsrecd.3 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
Ref | Expression |
---|---|
divsrecd | ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsrecd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
2 | divsrecd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | 1sno 27898 | . . . . . 6 ⊢ 1s ∈ No | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1s ∈ No ) |
5 | divsrecd.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
6 | 4, 1, 5 | divscld 28274 | . . . 4 ⊢ (𝜑 → ( 1s /su 𝐵) ∈ No ) |
7 | 1, 2, 6 | muls12d 28233 | . . 3 ⊢ (𝜑 → (𝐵 ·s (𝐴 ·s ( 1s /su 𝐵))) = (𝐴 ·s (𝐵 ·s ( 1s /su 𝐵)))) |
8 | 4, 1, 5 | divscan2d 28275 | . . . 4 ⊢ (𝜑 → (𝐵 ·s ( 1s /su 𝐵)) = 1s ) |
9 | 8 | oveq2d 7454 | . . 3 ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s ( 1s /su 𝐵))) = (𝐴 ·s 1s )) |
10 | 2 | mulsridd 28166 | . . 3 ⊢ (𝜑 → (𝐴 ·s 1s ) = 𝐴) |
11 | 7, 9, 10 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → (𝐵 ·s (𝐴 ·s ( 1s /su 𝐵))) = 𝐴) |
12 | 2, 6 | mulscld 28187 | . . 3 ⊢ (𝜑 → (𝐴 ·s ( 1s /su 𝐵)) ∈ No ) |
13 | 2, 12, 1, 5 | divsmuld 28272 | . 2 ⊢ (𝜑 → ((𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵)) ↔ (𝐵 ·s (𝐴 ·s ( 1s /su 𝐵))) = 𝐴)) |
14 | 11, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 (class class class)co 7438 No csur 27710 0s c0s 27893 1s c1s 27894 ·s cmuls 28158 /su cdivs 28239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-dc 10493 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-ot 4643 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-nadd 8712 df-no 27713 df-slt 27714 df-bday 27715 df-sle 27816 df-sslt 27852 df-scut 27854 df-0s 27895 df-1s 27896 df-made 27912 df-old 27913 df-left 27915 df-right 27916 df-norec 27997 df-norec2 28008 df-adds 28019 df-negs 28079 df-subs 28080 df-muls 28159 df-divs 28240 |
This theorem is referenced by: divsdird 28285 |
Copyright terms: Public domain | W3C validator |