| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsrecd | Structured version Visualization version GIF version | ||
| Description: Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025.) |
| Ref | Expression |
|---|---|
| divsrecd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divsrecd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divsrecd.3 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divsrecd | ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsrecd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divsrecd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | 1sno 27781 | . . . . . 6 ⊢ 1s ∈ No | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1s ∈ No ) |
| 5 | divsrecd.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 6 | 4, 1, 5 | divscld 28172 | . . . 4 ⊢ (𝜑 → ( 1s /su 𝐵) ∈ No ) |
| 7 | 1, 2, 6 | muls12d 28130 | . . 3 ⊢ (𝜑 → (𝐵 ·s (𝐴 ·s ( 1s /su 𝐵))) = (𝐴 ·s (𝐵 ·s ( 1s /su 𝐵)))) |
| 8 | 4, 1, 5 | divscan2d 28173 | . . . 4 ⊢ (𝜑 → (𝐵 ·s ( 1s /su 𝐵)) = 1s ) |
| 9 | 8 | oveq2d 7371 | . . 3 ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s ( 1s /su 𝐵))) = (𝐴 ·s 1s )) |
| 10 | 2 | mulsridd 28063 | . . 3 ⊢ (𝜑 → (𝐴 ·s 1s ) = 𝐴) |
| 11 | 7, 9, 10 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → (𝐵 ·s (𝐴 ·s ( 1s /su 𝐵))) = 𝐴) |
| 12 | 2, 6 | mulscld 28084 | . . 3 ⊢ (𝜑 → (𝐴 ·s ( 1s /su 𝐵)) ∈ No ) |
| 13 | 2, 12, 1, 5 | divsmuld 28170 | . 2 ⊢ (𝜑 → ((𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵)) ↔ (𝐵 ·s (𝐴 ·s ( 1s /su 𝐵))) = 𝐴)) |
| 14 | 11, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 (class class class)co 7355 No csur 27588 0s c0s 27776 1s c1s 27777 ·s cmuls 28055 /su cdivs 28136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-dc 10347 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 df-muls 28056 df-divs 28137 |
| This theorem is referenced by: divsdird 28183 |
| Copyright terms: Public domain | W3C validator |