MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cut Structured version   Visualization version   GIF version

Theorem pw2cut 28375
Description: Extend halfcut 28371 to arbitrary powers of two. Part of theorem 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 18-Aug-2025.)
Hypotheses
Ref Expression
pw2cut.1 (𝜑𝐴 No )
pw2cut.2 (𝜑𝐵 No )
pw2cut.3 (𝜑𝑁 ∈ ℕ0s)
pw2cut.4 (𝜑𝐴 <s 𝐵)
pw2cut.5 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))
Assertion
Ref Expression
pw2cut (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s ))))

Proof of Theorem pw2cut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2cut.3 . 2 (𝜑𝑁 ∈ ℕ0s)
2 oveq2 7422 . . . . . . . . 9 (𝑥 = 0s → (2ss𝑥) = (2ss 0s ))
3 2sno 28358 . . . . . . . . . 10 2s No
4 exps0 28365 . . . . . . . . . 10 (2s No → (2ss 0s ) = 1s )
53, 4ax-mp 5 . . . . . . . . 9 (2ss 0s ) = 1s
62, 5eqtrdi 2785 . . . . . . . 8 (𝑥 = 0s → (2ss𝑥) = 1s )
76oveq2d 7430 . . . . . . 7 (𝑥 = 0s → (𝐴 /su (2ss𝑥)) = (𝐴 /su 1s ))
87sneqd 4620 . . . . . 6 (𝑥 = 0s → {(𝐴 /su (2ss𝑥))} = {(𝐴 /su 1s )})
96oveq2d 7430 . . . . . . 7 (𝑥 = 0s → (𝐵 /su (2ss𝑥)) = (𝐵 /su 1s ))
109sneqd 4620 . . . . . 6 (𝑥 = 0s → {(𝐵 /su (2ss𝑥))} = {(𝐵 /su 1s )})
118, 10oveq12d 7432 . . . . 5 (𝑥 = 0s → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ({(𝐴 /su 1s )} |s {(𝐵 /su 1s )}))
12 oveq1 7421 . . . . . . . . 9 (𝑥 = 0s → (𝑥 +s 1s ) = ( 0s +s 1s ))
13 1sno 27827 . . . . . . . . . 10 1s No
14 addslid 27956 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
1513, 14ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
1612, 15eqtrdi 2785 . . . . . . . 8 (𝑥 = 0s → (𝑥 +s 1s ) = 1s )
1716oveq2d 7430 . . . . . . 7 (𝑥 = 0s → (2ss(𝑥 +s 1s )) = (2ss 1s ))
18 exps1 28366 . . . . . . . 8 (2s No → (2ss 1s ) = 2s)
193, 18ax-mp 5 . . . . . . 7 (2ss 1s ) = 2s
2017, 19eqtrdi 2785 . . . . . 6 (𝑥 = 0s → (2ss(𝑥 +s 1s )) = 2s)
2120oveq2d 7430 . . . . 5 (𝑥 = 0s → ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) = ((𝐴 +s 𝐵) /su 2s))
2211, 21eqeq12d 2750 . . . 4 (𝑥 = 0s → (({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) ↔ ({(𝐴 /su 1s )} |s {(𝐵 /su 1s )}) = ((𝐴 +s 𝐵) /su 2s)))
2322imbi2d 340 . . 3 (𝑥 = 0s → ((𝜑 → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s )))) ↔ (𝜑 → ({(𝐴 /su 1s )} |s {(𝐵 /su 1s )}) = ((𝐴 +s 𝐵) /su 2s))))
24 oveq2 7422 . . . . . . . 8 (𝑥 = 𝑦 → (2ss𝑥) = (2ss𝑦))
2524oveq2d 7430 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 /su (2ss𝑥)) = (𝐴 /su (2ss𝑦)))
2625sneqd 4620 . . . . . 6 (𝑥 = 𝑦 → {(𝐴 /su (2ss𝑥))} = {(𝐴 /su (2ss𝑦))})
2724oveq2d 7430 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 /su (2ss𝑥)) = (𝐵 /su (2ss𝑦)))
2827sneqd 4620 . . . . . 6 (𝑥 = 𝑦 → {(𝐵 /su (2ss𝑥))} = {(𝐵 /su (2ss𝑦))})
2926, 28oveq12d 7432 . . . . 5 (𝑥 = 𝑦 → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}))
30 oveq1 7421 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
3130oveq2d 7430 . . . . . 6 (𝑥 = 𝑦 → (2ss(𝑥 +s 1s )) = (2ss(𝑦 +s 1s )))
3231oveq2d 7430 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))))
3329, 32eqeq12d 2750 . . . 4 (𝑥 = 𝑦 → (({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) ↔ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))))
3433imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝜑 → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s )))) ↔ (𝜑 → ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))))))
35 oveq2 7422 . . . . . . . 8 (𝑥 = (𝑦 +s 1s ) → (2ss𝑥) = (2ss(𝑦 +s 1s )))
3635oveq2d 7430 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝐴 /su (2ss𝑥)) = (𝐴 /su (2ss(𝑦 +s 1s ))))
3736sneqd 4620 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → {(𝐴 /su (2ss𝑥))} = {(𝐴 /su (2ss(𝑦 +s 1s )))})
3835oveq2d 7430 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝐵 /su (2ss𝑥)) = (𝐵 /su (2ss(𝑦 +s 1s ))))
3938sneqd 4620 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → {(𝐵 /su (2ss𝑥))} = {(𝐵 /su (2ss(𝑦 +s 1s )))})
4037, 39oveq12d 7432 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}))
41 oveq1 7421 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝑥 +s 1s ) = ((𝑦 +s 1s ) +s 1s ))
4241oveq2d 7430 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → (2ss(𝑥 +s 1s )) = (2ss((𝑦 +s 1s ) +s 1s )))
4342oveq2d 7430 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) = ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))))
4440, 43eqeq12d 2750 . . . 4 (𝑥 = (𝑦 +s 1s ) → (({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) ↔ ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s )))))
4544imbi2d 340 . . 3 (𝑥 = (𝑦 +s 1s ) → ((𝜑 → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s )))) ↔ (𝜑 → ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))))))
46 oveq2 7422 . . . . . . . 8 (𝑥 = 𝑁 → (2ss𝑥) = (2ss𝑁))
4746oveq2d 7430 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 /su (2ss𝑥)) = (𝐴 /su (2ss𝑁)))
4847sneqd 4620 . . . . . 6 (𝑥 = 𝑁 → {(𝐴 /su (2ss𝑥))} = {(𝐴 /su (2ss𝑁))})
4946oveq2d 7430 . . . . . . 7 (𝑥 = 𝑁 → (𝐵 /su (2ss𝑥)) = (𝐵 /su (2ss𝑁)))
5049sneqd 4620 . . . . . 6 (𝑥 = 𝑁 → {(𝐵 /su (2ss𝑥))} = {(𝐵 /su (2ss𝑁))})
5148, 50oveq12d 7432 . . . . 5 (𝑥 = 𝑁 → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}))
52 oveq1 7421 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 +s 1s ) = (𝑁 +s 1s ))
5352oveq2d 7430 . . . . . 6 (𝑥 = 𝑁 → (2ss(𝑥 +s 1s )) = (2ss(𝑁 +s 1s )))
5453oveq2d 7430 . . . . 5 (𝑥 = 𝑁 → ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s ))))
5551, 54eqeq12d 2750 . . . 4 (𝑥 = 𝑁 → (({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s ))) ↔ ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s )))))
5655imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → ({(𝐴 /su (2ss𝑥))} |s {(𝐵 /su (2ss𝑥))}) = ((𝐴 +s 𝐵) /su (2ss(𝑥 +s 1s )))) ↔ (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s ))))))
57 pw2cut.1 . . . . . . 7 (𝜑𝐴 No )
58 divs1 28184 . . . . . . 7 (𝐴 No → (𝐴 /su 1s ) = 𝐴)
5957, 58syl 17 . . . . . 6 (𝜑 → (𝐴 /su 1s ) = 𝐴)
6059sneqd 4620 . . . . 5 (𝜑 → {(𝐴 /su 1s )} = {𝐴})
61 pw2cut.2 . . . . . . 7 (𝜑𝐵 No )
62 divs1 28184 . . . . . . 7 (𝐵 No → (𝐵 /su 1s ) = 𝐵)
6361, 62syl 17 . . . . . 6 (𝜑 → (𝐵 /su 1s ) = 𝐵)
6463sneqd 4620 . . . . 5 (𝜑 → {(𝐵 /su 1s )} = {𝐵})
6560, 64oveq12d 7432 . . . 4 (𝜑 → ({(𝐴 /su 1s )} |s {(𝐵 /su 1s )}) = ({𝐴} |s {𝐵}))
66 pw2cut.4 . . . . 5 (𝜑𝐴 <s 𝐵)
67 pw2cut.5 . . . . 5 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))
68 eqid 2734 . . . . 5 ({𝐴} |s {𝐵}) = ({𝐴} |s {𝐵})
6957, 61, 66, 67, 68halfcut 28371 . . . 4 (𝜑 → ({𝐴} |s {𝐵}) = ((𝐴 +s 𝐵) /su 2s))
7065, 69eqtrd 2769 . . 3 (𝜑 → ({(𝐴 /su 1s )} |s {(𝐵 /su 1s )}) = ((𝐴 +s 𝐵) /su 2s))
7157adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → 𝐴 No )
72 peano2n0s 28290 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
73 expscl 28368 . . . . . . . . . . . 12 ((2s No ∧ (𝑦 +s 1s ) ∈ ℕ0s) → (2ss(𝑦 +s 1s )) ∈ No )
743, 72, 73sylancr 587 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (2ss(𝑦 +s 1s )) ∈ No )
7574adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → (2ss(𝑦 +s 1s )) ∈ No )
76 2ne0s 28359 . . . . . . . . . . . . 13 2s ≠ 0s
77 expsne0 28369 . . . . . . . . . . . . 13 ((2s No ∧ 2s ≠ 0s ∧ (𝑦 +s 1s ) ∈ ℕ0s) → (2ss(𝑦 +s 1s )) ≠ 0s )
783, 76, 77mp3an12 1452 . . . . . . . . . . . 12 ((𝑦 +s 1s ) ∈ ℕ0s → (2ss(𝑦 +s 1s )) ≠ 0s )
7972, 78syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (2ss(𝑦 +s 1s )) ≠ 0s )
8079adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → (2ss(𝑦 +s 1s )) ≠ 0s )
8171, 75, 80divscld 28203 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝜑) → (𝐴 /su (2ss(𝑦 +s 1s ))) ∈ No )
82813adant3 1132 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → (𝐴 /su (2ss(𝑦 +s 1s ))) ∈ No )
8361adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → 𝐵 No )
8483, 75, 80divscld 28203 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝜑) → (𝐵 /su (2ss(𝑦 +s 1s ))) ∈ No )
85843adant3 1132 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → (𝐵 /su (2ss(𝑦 +s 1s ))) ∈ No )
8671, 75, 80divscan1d 28205 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝜑) → ((𝐴 /su (2ss(𝑦 +s 1s ))) ·s (2ss(𝑦 +s 1s ))) = 𝐴)
8766adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝜑) → 𝐴 <s 𝐵)
8886, 87eqbrtrd 5147 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → ((𝐴 /su (2ss(𝑦 +s 1s ))) ·s (2ss(𝑦 +s 1s ))) <s 𝐵)
89 2nns 28357 . . . . . . . . . . . . . . 15 2s ∈ ℕs
90 nnsgt0 28297 . . . . . . . . . . . . . . 15 (2s ∈ ℕs → 0s <s 2s)
9189, 90ax-mp 5 . . . . . . . . . . . . . 14 0s <s 2s
92 expsgt0 28370 . . . . . . . . . . . . . 14 ((2s No ∧ (𝑦 +s 1s ) ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss(𝑦 +s 1s )))
933, 91, 92mp3an13 1453 . . . . . . . . . . . . 13 ((𝑦 +s 1s ) ∈ ℕ0s → 0s <s (2ss(𝑦 +s 1s )))
9472, 93syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s → 0s <s (2ss(𝑦 +s 1s )))
9594adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝜑) → 0s <s (2ss(𝑦 +s 1s )))
9681, 83, 75, 95sltmuldivd 28208 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → (((𝐴 /su (2ss(𝑦 +s 1s ))) ·s (2ss(𝑦 +s 1s ))) <s 𝐵 ↔ (𝐴 /su (2ss(𝑦 +s 1s ))) <s (𝐵 /su (2ss(𝑦 +s 1s )))))
9788, 96mpbid 232 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝜑) → (𝐴 /su (2ss(𝑦 +s 1s ))) <s (𝐵 /su (2ss(𝑦 +s 1s ))))
98973adant3 1132 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → (𝐴 /su (2ss(𝑦 +s 1s ))) <s (𝐵 /su (2ss(𝑦 +s 1s ))))
99 expsp1 28367 . . . . . . . . . . . . . . . . . . 19 ((2s No 𝑦 ∈ ℕ0s) → (2ss(𝑦 +s 1s )) = ((2ss𝑦) ·s 2s))
1003, 99mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0s → (2ss(𝑦 +s 1s )) = ((2ss𝑦) ·s 2s))
101100adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0s𝜑) → (2ss(𝑦 +s 1s )) = ((2ss𝑦) ·s 2s))
102101oveq2d 7430 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0s𝜑) → (𝐴 /su (2ss(𝑦 +s 1s ))) = (𝐴 /su ((2ss𝑦) ·s 2s)))
103 expscl 28368 . . . . . . . . . . . . . . . . . . 19 ((2s No 𝑦 ∈ ℕ0s) → (2ss𝑦) ∈ No )
1043, 103mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0s → (2ss𝑦) ∈ No )
105104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0s𝜑) → (2ss𝑦) ∈ No )
1063a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0s𝜑) → 2s No )
107 expsne0 28369 . . . . . . . . . . . . . . . . . . 19 ((2s No ∧ 2s ≠ 0s𝑦 ∈ ℕ0s) → (2ss𝑦) ≠ 0s )
1083, 76, 107mp3an12 1452 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0s → (2ss𝑦) ≠ 0s )
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0s𝜑) → (2ss𝑦) ≠ 0s )
11076a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0s𝜑) → 2s ≠ 0s )
11171, 105, 106, 109, 110divdivs1d 28212 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0s𝜑) → ((𝐴 /su (2ss𝑦)) /su 2s) = (𝐴 /su ((2ss𝑦) ·s 2s)))
112102, 111eqtr4d 2772 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0s𝜑) → (𝐴 /su (2ss(𝑦 +s 1s ))) = ((𝐴 /su (2ss𝑦)) /su 2s))
113112oveq2d 7430 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → (2s ·s (𝐴 /su (2ss(𝑦 +s 1s )))) = (2s ·s ((𝐴 /su (2ss𝑦)) /su 2s)))
11471, 105, 109divscld 28203 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0s𝜑) → (𝐴 /su (2ss𝑦)) ∈ No )
115114, 106, 110divscan2d 28204 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → (2s ·s ((𝐴 /su (2ss𝑦)) /su 2s)) = (𝐴 /su (2ss𝑦)))
116113, 115eqtrd 2769 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0s𝜑) → (2s ·s (𝐴 /su (2ss(𝑦 +s 1s )))) = (𝐴 /su (2ss𝑦)))
117116sneqd 4620 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝜑) → {(2s ·s (𝐴 /su (2ss(𝑦 +s 1s ))))} = {(𝐴 /su (2ss𝑦))})
118101oveq2d 7430 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0s𝜑) → (𝐵 /su (2ss(𝑦 +s 1s ))) = (𝐵 /su ((2ss𝑦) ·s 2s)))
11983, 105, 106, 109, 110divdivs1d 28212 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0s𝜑) → ((𝐵 /su (2ss𝑦)) /su 2s) = (𝐵 /su ((2ss𝑦) ·s 2s)))
120118, 119eqtr4d 2772 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0s𝜑) → (𝐵 /su (2ss(𝑦 +s 1s ))) = ((𝐵 /su (2ss𝑦)) /su 2s))
121120oveq2d 7430 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → (2s ·s (𝐵 /su (2ss(𝑦 +s 1s )))) = (2s ·s ((𝐵 /su (2ss𝑦)) /su 2s)))
12283, 105, 109divscld 28203 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0s𝜑) → (𝐵 /su (2ss𝑦)) ∈ No )
123122, 106, 110divscan2d 28204 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → (2s ·s ((𝐵 /su (2ss𝑦)) /su 2s)) = (𝐵 /su (2ss𝑦)))
124121, 123eqtrd 2769 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0s𝜑) → (2s ·s (𝐵 /su (2ss(𝑦 +s 1s )))) = (𝐵 /su (2ss𝑦)))
125124sneqd 4620 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝜑) → {(2s ·s (𝐵 /su (2ss(𝑦 +s 1s ))))} = {(𝐵 /su (2ss𝑦))})
126117, 125oveq12d 7432 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝜑) → ({(2s ·s (𝐴 /su (2ss(𝑦 +s 1s ))))} |s {(2s ·s (𝐵 /su (2ss(𝑦 +s 1s ))))}) = ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}))
127126eqcomd 2740 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ({(2s ·s (𝐴 /su (2ss(𝑦 +s 1s ))))} |s {(2s ·s (𝐵 /su (2ss(𝑦 +s 1s ))))}))
12871, 83, 75, 80divsdird 28214 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝜑) → ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) = ((𝐴 /su (2ss(𝑦 +s 1s ))) +s (𝐵 /su (2ss(𝑦 +s 1s )))))
129127, 128eqeq12d 2750 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝜑) → (({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) ↔ ({(2s ·s (𝐴 /su (2ss(𝑦 +s 1s ))))} |s {(2s ·s (𝐵 /su (2ss(𝑦 +s 1s ))))}) = ((𝐴 /su (2ss(𝑦 +s 1s ))) +s (𝐵 /su (2ss(𝑦 +s 1s ))))))
130129biimp3a 1470 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → ({(2s ·s (𝐴 /su (2ss(𝑦 +s 1s ))))} |s {(2s ·s (𝐵 /su (2ss(𝑦 +s 1s ))))}) = ((𝐴 /su (2ss(𝑦 +s 1s ))) +s (𝐵 /su (2ss(𝑦 +s 1s )))))
131 eqid 2734 . . . . . . . 8 ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))})
13282, 85, 98, 130, 131halfcut 28371 . . . . . . 7 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = (((𝐴 /su (2ss(𝑦 +s 1s ))) +s (𝐵 /su (2ss(𝑦 +s 1s )))) /su 2s))
133128oveq1d 7429 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑) → (((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) /su 2s) = (((𝐴 /su (2ss(𝑦 +s 1s ))) +s (𝐵 /su (2ss(𝑦 +s 1s )))) /su 2s))
1341333adant3 1132 . . . . . . 7 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → (((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) /su 2s) = (((𝐴 /su (2ss(𝑦 +s 1s ))) +s (𝐵 /su (2ss(𝑦 +s 1s )))) /su 2s))
135132, 134eqtr4d 2772 . . . . . 6 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = (((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) /su 2s))
136 expsp1 28367 . . . . . . . . . . 11 ((2s No ∧ (𝑦 +s 1s ) ∈ ℕ0s) → (2ss((𝑦 +s 1s ) +s 1s )) = ((2ss(𝑦 +s 1s )) ·s 2s))
1373, 72, 136sylancr 587 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → (2ss((𝑦 +s 1s ) +s 1s )) = ((2ss(𝑦 +s 1s )) ·s 2s))
138137adantr 480 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝜑) → (2ss((𝑦 +s 1s ) +s 1s )) = ((2ss(𝑦 +s 1s )) ·s 2s))
139138oveq2d 7430 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑) → ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))) = ((𝐴 +s 𝐵) /su ((2ss(𝑦 +s 1s )) ·s 2s)))
14071, 83addscld 27968 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝜑) → (𝐴 +s 𝐵) ∈ No )
141140, 75, 106, 80, 110divdivs1d 28212 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝜑) → (((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) /su 2s) = ((𝐴 +s 𝐵) /su ((2ss(𝑦 +s 1s )) ·s 2s)))
142139, 141eqtr4d 2772 . . . . . . 7 ((𝑦 ∈ ℕ0s𝜑) → ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))) = (((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) /su 2s))
1431423adant3 1132 . . . . . 6 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))) = (((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) /su 2s))
144135, 143eqtr4d 2772 . . . . 5 ((𝑦 ∈ ℕ0s𝜑 ∧ ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))))
1451443exp 1119 . . . 4 (𝑦 ∈ ℕ0s → (𝜑 → (({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s ))) → ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))))))
146145a2d 29 . . 3 (𝑦 ∈ ℕ0s → ((𝜑 → ({(𝐴 /su (2ss𝑦))} |s {(𝐵 /su (2ss𝑦))}) = ((𝐴 +s 𝐵) /su (2ss(𝑦 +s 1s )))) → (𝜑 → ({(𝐴 /su (2ss(𝑦 +s 1s )))} |s {(𝐵 /su (2ss(𝑦 +s 1s )))}) = ((𝐴 +s 𝐵) /su (2ss((𝑦 +s 1s ) +s 1s ))))))
14723, 34, 45, 56, 70, 146n0sind 28292 . 2 (𝑁 ∈ ℕ0s → (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s )))))
1481, 147mpcom 38 1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  {csn 4608   class class class wbr 5125  (class class class)co 7414   No csur 27639   <s cslt 27640   |s cscut 27782   0s c0s 27822   1s c1s 27823   +s cadds 27947   ·s cmuls 28087   /su cdivs 28168  0scnn0s 28273  scnns 28274  2sc2s 28349  scexps 28351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-dc 10469
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-ot 4617  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-nadd 8687  df-no 27642  df-slt 27643  df-bday 27644  df-sle 27745  df-sslt 27781  df-scut 27783  df-0s 27824  df-1s 27825  df-made 27841  df-old 27842  df-left 27844  df-right 27845  df-norec 27926  df-norec2 27937  df-adds 27948  df-negs 28008  df-subs 28009  df-muls 28088  df-divs 28169  df-seqs 28245  df-n0s 28275  df-nns 28276  df-zs 28320  df-2s 28350  df-exps 28352
This theorem is referenced by:  zs12bday  28379
  Copyright terms: Public domain W3C validator