MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdivs1d Structured version   Visualization version   GIF version

Theorem divdivs1d 28141
Description: Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.)
Hypotheses
Ref Expression
divdivs1d.1 (𝜑𝐴 No )
divdivs1d.2 (𝜑𝐵 No )
divdivs1d.3 (𝜑𝐶 No )
divdivs1d.4 (𝜑𝐵 ≠ 0s )
divdivs1d.5 (𝜑𝐶 ≠ 0s )
Assertion
Ref Expression
divdivs1d (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)))

Proof of Theorem divdivs1d
StepHypRef Expression
1 divdivs1d.2 . . . . . 6 (𝜑𝐵 No )
2 divdivs1d.3 . . . . . 6 (𝜑𝐶 No )
3 divdivs1d.1 . . . . . . 7 (𝜑𝐴 No )
41, 2mulscld 28044 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
5 divdivs1d.4 . . . . . . . 8 (𝜑𝐵 ≠ 0s )
6 divdivs1d.5 . . . . . . . 8 (𝜑𝐶 ≠ 0s )
71, 2mulsne0bd 28095 . . . . . . . 8 (𝜑 → ((𝐵 ·s 𝐶) ≠ 0s ↔ (𝐵 ≠ 0s𝐶 ≠ 0s )))
85, 6, 7mpbir2and 713 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ≠ 0s )
93, 4, 8divscld 28132 . . . . . 6 (𝜑 → (𝐴 /su (𝐵 ·s 𝐶)) ∈ No )
101, 2, 9mulsassd 28076 . . . . 5 (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))))
113, 4, 8divscan2d 28133 . . . . 5 (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = 𝐴)
1210, 11eqtr3d 2767 . . . 4 (𝜑 → (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴)
132, 9mulscld 28044 . . . . 5 (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ∈ No )
143, 13, 1, 5divsmuld 28130 . . . 4 (𝜑 → ((𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ↔ (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴))
1512, 14mpbird 257 . . 3 (𝜑 → (𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))))
1615eqcomd 2736 . 2 (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵))
173, 1, 5divscld 28132 . . 3 (𝜑 → (𝐴 /su 𝐵) ∈ No )
1817, 9, 2, 6divsmuld 28130 . 2 (𝜑 → (((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)) ↔ (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵)))
1916, 18mpbird 257 1 (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7389   No csur 27557   0s c0s 27740   ·s cmuls 28015   /su cdivs 28096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-dc 10405
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-nadd 8632  df-no 27560  df-slt 27561  df-bday 27562  df-sle 27663  df-sslt 27699  df-scut 27701  df-0s 27742  df-1s 27743  df-made 27761  df-old 27762  df-left 27764  df-right 27765  df-norec 27851  df-norec2 27862  df-adds 27873  df-negs 27933  df-subs 27934  df-muls 28016  df-divs 28097
This theorem is referenced by:  pw2cut  28341  zs12bday  28349
  Copyright terms: Public domain W3C validator