| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdivs1d | Structured version Visualization version GIF version | ||
| Description: Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| divdivs1d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divdivs1d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divdivs1d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divdivs1d.4 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
| divdivs1d.5 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divdivs1d | ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdivs1d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divdivs1d.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | divdivs1d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 1, 2 | mulscld 28061 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 5 | divdivs1d.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 6 | divdivs1d.5 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 7 | 1, 2 | mulsne0bd 28112 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ≠ 0s ↔ (𝐵 ≠ 0s ∧ 𝐶 ≠ 0s ))) |
| 8 | 5, 6, 7 | mpbir2and 713 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ≠ 0s ) |
| 9 | 3, 4, 8 | divscld 28149 | . . . . . 6 ⊢ (𝜑 → (𝐴 /su (𝐵 ·s 𝐶)) ∈ No ) |
| 10 | 1, 2, 9 | mulsassd 28093 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))))) |
| 11 | 3, 4, 8 | divscan2d 28150 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = 𝐴) |
| 12 | 10, 11 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴) |
| 13 | 2, 9 | mulscld 28061 | . . . . 5 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ∈ No ) |
| 14 | 3, 13, 1, 5 | divsmuld 28147 | . . . 4 ⊢ (𝜑 → ((𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ↔ (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴)) |
| 15 | 12, 14 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) |
| 16 | 15 | eqcomd 2735 | . 2 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵)) |
| 17 | 3, 1, 5 | divscld 28149 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) |
| 18 | 17, 9, 2, 6 | divsmuld 28147 | . 2 ⊢ (𝜑 → (((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)) ↔ (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 No csur 27567 0s c0s 27754 ·s cmuls 28032 /su cdivs 28113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-dc 10359 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-subs 27951 df-muls 28033 df-divs 28114 |
| This theorem is referenced by: pw2cut 28366 zs12bday 28379 |
| Copyright terms: Public domain | W3C validator |