| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdivs1d | Structured version Visualization version GIF version | ||
| Description: Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| divdivs1d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divdivs1d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divdivs1d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divdivs1d.4 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
| divdivs1d.5 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divdivs1d | ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdivs1d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divdivs1d.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | divdivs1d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 1, 2 | mulscld 28067 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 5 | divdivs1d.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 6 | divdivs1d.5 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 7 | 1, 2 | mulsne0bd 28118 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ≠ 0s ↔ (𝐵 ≠ 0s ∧ 𝐶 ≠ 0s ))) |
| 8 | 5, 6, 7 | mpbir2and 713 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ≠ 0s ) |
| 9 | 3, 4, 8 | divscld 28155 | . . . . . 6 ⊢ (𝜑 → (𝐴 /su (𝐵 ·s 𝐶)) ∈ No ) |
| 10 | 1, 2, 9 | mulsassd 28099 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))))) |
| 11 | 3, 4, 8 | divscan2d 28156 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = 𝐴) |
| 12 | 10, 11 | eqtr3d 2767 | . . . 4 ⊢ (𝜑 → (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴) |
| 13 | 2, 9 | mulscld 28067 | . . . . 5 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ∈ No ) |
| 14 | 3, 13, 1, 5 | divsmuld 28153 | . . . 4 ⊢ (𝜑 → ((𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ↔ (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴)) |
| 15 | 12, 14 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) |
| 16 | 15 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵)) |
| 17 | 3, 1, 5 | divscld 28155 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) |
| 18 | 17, 9, 2, 6 | divsmuld 28153 | . 2 ⊢ (𝜑 → (((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)) ↔ (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 (class class class)co 7341 No csur 27571 0s c0s 27759 ·s cmuls 28038 /su cdivs 28119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-dc 10329 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-nadd 8576 df-no 27574 df-slt 27575 df-bday 27576 df-sle 27677 df-sslt 27714 df-scut 27716 df-0s 27761 df-1s 27762 df-made 27781 df-old 27782 df-left 27784 df-right 27785 df-norec 27874 df-norec2 27885 df-adds 27896 df-negs 27956 df-subs 27957 df-muls 28039 df-divs 28120 |
| This theorem is referenced by: pw2cut 28373 zs12bday 28387 |
| Copyright terms: Public domain | W3C validator |