| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdivs1d | Structured version Visualization version GIF version | ||
| Description: Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| divdivs1d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divdivs1d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divdivs1d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divdivs1d.4 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
| divdivs1d.5 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divdivs1d | ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdivs1d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divdivs1d.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | divdivs1d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 1, 2 | mulscld 28095 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 5 | divdivs1d.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 6 | divdivs1d.5 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 7 | 1, 2 | mulsne0bd 28146 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ≠ 0s ↔ (𝐵 ≠ 0s ∧ 𝐶 ≠ 0s ))) |
| 8 | 5, 6, 7 | mpbir2and 713 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ≠ 0s ) |
| 9 | 3, 4, 8 | divscld 28183 | . . . . . 6 ⊢ (𝜑 → (𝐴 /su (𝐵 ·s 𝐶)) ∈ No ) |
| 10 | 1, 2, 9 | mulsassd 28127 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))))) |
| 11 | 3, 4, 8 | divscan2d 28184 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = 𝐴) |
| 12 | 10, 11 | eqtr3d 2773 | . . . 4 ⊢ (𝜑 → (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴) |
| 13 | 2, 9 | mulscld 28095 | . . . . 5 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ∈ No ) |
| 14 | 3, 13, 1, 5 | divsmuld 28181 | . . . 4 ⊢ (𝜑 → ((𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ↔ (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴)) |
| 15 | 12, 14 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) |
| 16 | 15 | eqcomd 2742 | . 2 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵)) |
| 17 | 3, 1, 5 | divscld 28183 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) |
| 18 | 17, 9, 2, 6 | divsmuld 28181 | . 2 ⊢ (𝜑 → (((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)) ↔ (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 No csur 27608 0s c0s 27791 ·s cmuls 28066 /su cdivs 28147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-dc 10465 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-nadd 8683 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-1s 27794 df-made 27812 df-old 27813 df-left 27815 df-right 27816 df-norec 27902 df-norec2 27913 df-adds 27924 df-negs 27984 df-subs 27985 df-muls 28067 df-divs 28148 |
| This theorem is referenced by: pw2cut 28392 zs12bday 28400 |
| Copyright terms: Public domain | W3C validator |