| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdivs1d | Structured version Visualization version GIF version | ||
| Description: Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| divdivs1d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divdivs1d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divdivs1d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divdivs1d.4 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
| divdivs1d.5 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divdivs1d | ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdivs1d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divdivs1d.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | divdivs1d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 1, 2 | mulscld 28044 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 5 | divdivs1d.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 6 | divdivs1d.5 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 7 | 1, 2 | mulsne0bd 28095 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ≠ 0s ↔ (𝐵 ≠ 0s ∧ 𝐶 ≠ 0s ))) |
| 8 | 5, 6, 7 | mpbir2and 713 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ·s 𝐶) ≠ 0s ) |
| 9 | 3, 4, 8 | divscld 28132 | . . . . . 6 ⊢ (𝜑 → (𝐴 /su (𝐵 ·s 𝐶)) ∈ No ) |
| 10 | 1, 2, 9 | mulsassd 28076 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))))) |
| 11 | 3, 4, 8 | divscan2d 28133 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐶) ·s (𝐴 /su (𝐵 ·s 𝐶))) = 𝐴) |
| 12 | 10, 11 | eqtr3d 2767 | . . . 4 ⊢ (𝜑 → (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴) |
| 13 | 2, 9 | mulscld 28044 | . . . . 5 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ∈ No ) |
| 14 | 3, 13, 1, 5 | divsmuld 28130 | . . . 4 ⊢ (𝜑 → ((𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) ↔ (𝐵 ·s (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) = 𝐴)) |
| 15 | 12, 14 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶)))) |
| 16 | 15 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵)) |
| 17 | 3, 1, 5 | divscld 28132 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) |
| 18 | 17, 9, 2, 6 | divsmuld 28130 | . 2 ⊢ (𝜑 → (((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶)) ↔ (𝐶 ·s (𝐴 /su (𝐵 ·s 𝐶))) = (𝐴 /su 𝐵))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7389 No csur 27557 0s c0s 27740 ·s cmuls 28015 /su cdivs 28096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-dc 10405 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-ot 4600 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-nadd 8632 df-no 27560 df-slt 27561 df-bday 27562 df-sle 27663 df-sslt 27699 df-scut 27701 df-0s 27742 df-1s 27743 df-made 27761 df-old 27762 df-left 27764 df-right 27765 df-norec 27851 df-norec2 27862 df-adds 27873 df-negs 27933 df-subs 27934 df-muls 28016 df-divs 28097 |
| This theorem is referenced by: pw2cut 28341 zs12bday 28349 |
| Copyright terms: Public domain | W3C validator |