| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sno | Structured version Visualization version GIF version | ||
| Description: A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0sno | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ssno 28189 | . 2 ⊢ ℕ0s ⊆ No | |
| 2 | 1 | sseli 3939 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 No csur 27527 ℕ0scnn0s 28182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27530 df-slt 27531 df-bday 27532 df-sslt 27669 df-scut 27671 df-0s 27712 df-1s 27713 df-made 27731 df-old 27732 df-left 27734 df-right 27735 df-norec2 27832 df-adds 27843 df-n0s 28184 |
| This theorem is referenced by: n0snod 28194 n0scut 28202 n0scut2 28203 n0ons 28204 n0sge0 28206 elnns2 28209 n0s0suc 28210 nnsge1 28211 n0addscl 28212 n0mulscl 28213 n0sbday 28220 n0ssold 28221 n0s0m1 28228 n0subs 28229 n0subs2 28230 n0sltp1le 28231 n0sleltp1 28232 n0slem1lt 28233 bdayn0p1 28234 elzn0s 28262 peano5uzs 28268 zscut 28271 n0seo 28283 zseo 28284 expadds 28296 |
| Copyright terms: Public domain | W3C validator |