| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sno | Structured version Visualization version GIF version | ||
| Description: A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0sno | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ssno 28220 | . 2 ⊢ ℕ0s ⊆ No | |
| 2 | 1 | sseli 3945 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 No csur 27558 ℕ0scnn0s 28213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec2 27863 df-adds 27874 df-n0s 28215 |
| This theorem is referenced by: n0snod 28225 n0scut 28233 n0scut2 28234 n0ons 28235 n0sge0 28237 elnns2 28240 n0s0suc 28241 nnsge1 28242 n0addscl 28243 n0mulscl 28244 n0sbday 28251 n0ssold 28252 n0s0m1 28259 n0subs 28260 n0subs2 28261 n0sltp1le 28262 n0sleltp1 28263 n0slem1lt 28264 bdayn0p1 28265 elzn0s 28293 peano5uzs 28299 zscut 28302 n0seo 28314 zseo 28315 expadds 28327 |
| Copyright terms: Public domain | W3C validator |