| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sno | Structured version Visualization version GIF version | ||
| Description: A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0sno | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ssno 28244 | . 2 ⊢ ℕ0s ⊆ No | |
| 2 | 1 | sseli 3925 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 No csur 27573 ℕ0scnn0s 28237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27576 df-slt 27577 df-bday 27578 df-sslt 27716 df-scut 27718 df-0s 27763 df-1s 27764 df-made 27783 df-old 27784 df-left 27786 df-right 27787 df-norec2 27887 df-adds 27898 df-n0s 28239 |
| This theorem is referenced by: n0snod 28249 n0scut 28257 n0scut2 28258 n0ons 28259 n0sge0 28261 elnns2 28264 n0s0suc 28265 nnsge1 28266 n0addscl 28267 n0mulscl 28268 n0sbday 28275 n0ssold 28276 n0s0m1 28283 n0subs 28284 n0subs2 28285 n0sltp1le 28286 n0sleltp1 28287 n0slem1lt 28288 bdayn0p1 28289 elzn0s 28317 peano5uzs 28323 zscut 28326 n0seo 28339 zseo 28340 expadds 28353 |
| Copyright terms: Public domain | W3C validator |