| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sno | Structured version Visualization version GIF version | ||
| Description: A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0sno | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ssno 28269 | . 2 ⊢ ℕ0s ⊆ No | |
| 2 | 1 | sseli 3926 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 No csur 27598 ℕ0scnn0s 28262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27601 df-slt 27602 df-bday 27603 df-sslt 27741 df-scut 27743 df-0s 27788 df-1s 27789 df-made 27808 df-old 27809 df-left 27811 df-right 27812 df-norec2 27912 df-adds 27923 df-n0s 28264 |
| This theorem is referenced by: n0snod 28274 n0scut 28282 n0scut2 28283 n0ons 28284 n0sge0 28286 elnns2 28289 n0s0suc 28290 nnsge1 28291 n0addscl 28292 n0mulscl 28293 n0sbday 28300 n0ssold 28301 n0s0m1 28308 n0subs 28309 n0subs2 28310 n0sltp1le 28311 n0sleltp1 28312 n0slem1lt 28313 bdayn0p1 28314 elzn0s 28342 peano5uzs 28348 zscut 28351 n0seo 28364 zseo 28365 expadds 28378 |
| Copyright terms: Public domain | W3C validator |