MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnzs Structured version   Visualization version   GIF version

Theorem elnnzs 28341
Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elnnzs (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))

Proof of Theorem elnnzs
StepHypRef Expression
1 nnsno 28269 . . . 4 (𝑁 ∈ ℕs𝑁 No )
2 orc 867 . . . 4 (𝑁 ∈ ℕs → (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3 nnsgt0 28283 . . . 4 (𝑁 ∈ ℕs → 0s <s 𝑁)
41, 2, 3jca31 514 . . 3 (𝑁 ∈ ℕs → ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → (𝑁 ∈ ℕs𝑁 ∈ ℕs))
6 negscl 27994 . . . . . . . . . . . 12 (𝑁 No → ( -us𝑁) ∈ No )
76adantr 480 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) ∈ No )
8 0sno 27790 . . . . . . . . . . . . . 14 0s No
9 sltneg 28003 . . . . . . . . . . . . . 14 (( 0s No 𝑁 No ) → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
108, 9mpan 690 . . . . . . . . . . . . 13 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
11 negs0s 27984 . . . . . . . . . . . . . 14 ( -us ‘ 0s ) = 0s
1211breq2i 5127 . . . . . . . . . . . . 13 (( -us𝑁) <s ( -us ‘ 0s ) ↔ ( -us𝑁) <s 0s )
1310, 12bitrdi 287 . . . . . . . . . . . 12 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s 0s ))
1413biimpa 476 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) <s 0s )
15 sltasym 27712 . . . . . . . . . . . 12 ((( -us𝑁) ∈ No ∧ 0s No ) → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
168, 15mpan2 691 . . . . . . . . . . 11 (( -us𝑁) ∈ No → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
177, 14, 16sylc 65 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 0s <s ( -us𝑁))
18 nnsgt0 28283 . . . . . . . . . 10 (( -us𝑁) ∈ ℕs → 0s <s ( -us𝑁))
1917, 18nsyl 140 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ ( -us𝑁) ∈ ℕs)
20 sgt0ne0 27799 . . . . . . . . . . 11 ( 0s <s 𝑁𝑁 ≠ 0s )
2120adantl 481 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → 𝑁 ≠ 0s )
2221neneqd 2937 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 𝑁 = 0s )
23 ioran 985 . . . . . . . . 9 (¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (¬ ( -us𝑁) ∈ ℕs ∧ ¬ 𝑁 = 0s ))
2419, 22, 23sylanbrc 583 . . . . . . . 8 ((𝑁 No ∧ 0s <s 𝑁) → ¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ))
2524pm2.21d 121 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → ((( -us𝑁) ∈ ℕs𝑁 = 0s ) → 𝑁 ∈ ℕs))
265, 25jaod 859 . . . . . 6 ((𝑁 No ∧ 0s <s 𝑁) → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs))
2726ex 412 . . . . 5 (𝑁 No → ( 0s <s 𝑁 → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs)))
2827com23 86 . . . 4 (𝑁 No → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → ( 0s <s 𝑁𝑁 ∈ ℕs)))
2928imp31 417 . . 3 (((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁) → 𝑁 ∈ ℕs)
304, 29impbii 209 . 2 (𝑁 ∈ ℕs ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
31 elzs2 28339 . . . 4 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
32 3orcomb 1093 . . . . . 6 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ))
33 3orass 1089 . . . . . 6 ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3432, 33bitri 275 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3534anbi2i 623 . . . 4 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3631, 35bitri 275 . . 3 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3736anbi1i 624 . 2 ((𝑁 ∈ ℤs ∧ 0s <s 𝑁) ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
3830, 37bitr4i 278 1 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531   No csur 27603   <s cslt 27604   0s c0s 27786   -us cnegs 27977  scnns 28259  sczs 28318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-n0s 28260  df-nns 28261  df-zs 28319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator