MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnzs Structured version   Visualization version   GIF version

Theorem elnnzs 28290
Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elnnzs (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))

Proof of Theorem elnnzs
StepHypRef Expression
1 nnsno 28232 . . . 4 (𝑁 ∈ ℕs𝑁 No )
2 orc 867 . . . 4 (𝑁 ∈ ℕs → (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3 nnsgt0 28245 . . . 4 (𝑁 ∈ ℕs → 0s <s 𝑁)
41, 2, 3jca31 514 . . 3 (𝑁 ∈ ℕs → ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → (𝑁 ∈ ℕs𝑁 ∈ ℕs))
6 negscl 27971 . . . . . . . . . . . 12 (𝑁 No → ( -us𝑁) ∈ No )
76adantr 480 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) ∈ No )
8 0sno 27774 . . . . . . . . . . . . . 14 0s No
9 sltneg 27980 . . . . . . . . . . . . . 14 (( 0s No 𝑁 No ) → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
108, 9mpan 690 . . . . . . . . . . . . 13 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
11 negs0s 27961 . . . . . . . . . . . . . 14 ( -us ‘ 0s ) = 0s
1211breq2i 5124 . . . . . . . . . . . . 13 (( -us𝑁) <s ( -us ‘ 0s ) ↔ ( -us𝑁) <s 0s )
1310, 12bitrdi 287 . . . . . . . . . . . 12 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s 0s ))
1413biimpa 476 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) <s 0s )
15 sltasym 27696 . . . . . . . . . . . 12 ((( -us𝑁) ∈ No ∧ 0s No ) → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
168, 15mpan2 691 . . . . . . . . . . 11 (( -us𝑁) ∈ No → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
177, 14, 16sylc 65 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 0s <s ( -us𝑁))
18 nnsgt0 28245 . . . . . . . . . 10 (( -us𝑁) ∈ ℕs → 0s <s ( -us𝑁))
1917, 18nsyl 140 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ ( -us𝑁) ∈ ℕs)
20 sgt0ne0 27782 . . . . . . . . . . 11 ( 0s <s 𝑁𝑁 ≠ 0s )
2120adantl 481 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → 𝑁 ≠ 0s )
2221neneqd 2936 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 𝑁 = 0s )
23 ioran 985 . . . . . . . . 9 (¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (¬ ( -us𝑁) ∈ ℕs ∧ ¬ 𝑁 = 0s ))
2419, 22, 23sylanbrc 583 . . . . . . . 8 ((𝑁 No ∧ 0s <s 𝑁) → ¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ))
2524pm2.21d 121 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → ((( -us𝑁) ∈ ℕs𝑁 = 0s ) → 𝑁 ∈ ℕs))
265, 25jaod 859 . . . . . 6 ((𝑁 No ∧ 0s <s 𝑁) → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs))
2726ex 412 . . . . 5 (𝑁 No → ( 0s <s 𝑁 → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs)))
2827com23 86 . . . 4 (𝑁 No → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → ( 0s <s 𝑁𝑁 ∈ ℕs)))
2928imp31 417 . . 3 (((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁) → 𝑁 ∈ ℕs)
304, 29impbii 209 . 2 (𝑁 ∈ ℕs ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
31 elzs2 28288 . . . 4 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
32 3orcomb 1093 . . . . . 6 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ))
33 3orass 1089 . . . . . 6 ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3432, 33bitri 275 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3534anbi2i 623 . . . 4 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3631, 35bitri 275 . . 3 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3736anbi1i 624 . 2 ((𝑁 ∈ ℤs ∧ 0s <s 𝑁) ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
3830, 37bitr4i 278 1 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5116  cfv 6527   No csur 27587   <s cslt 27588   0s c0s 27770   -us cnegs 27954  scnns 28222  sczs 28267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-nadd 8672  df-no 27590  df-slt 27591  df-bday 27592  df-sle 27693  df-sslt 27729  df-scut 27731  df-0s 27772  df-1s 27773  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-n0s 28223  df-nns 28224  df-zs 28268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator