MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnzs Structured version   Visualization version   GIF version

Theorem elnnzs 28318
Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elnnzs (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))

Proof of Theorem elnnzs
StepHypRef Expression
1 nnsno 28246 . . . 4 (𝑁 ∈ ℕs𝑁 No )
2 orc 867 . . . 4 (𝑁 ∈ ℕs → (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3 nnsgt0 28260 . . . 4 (𝑁 ∈ ℕs → 0s <s 𝑁)
41, 2, 3jca31 514 . . 3 (𝑁 ∈ ℕs → ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → (𝑁 ∈ ℕs𝑁 ∈ ℕs))
6 negscl 27971 . . . . . . . . . . . 12 (𝑁 No → ( -us𝑁) ∈ No )
76adantr 480 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) ∈ No )
8 0sno 27763 . . . . . . . . . . . . . 14 0s No
9 sltneg 27980 . . . . . . . . . . . . . 14 (( 0s No 𝑁 No ) → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
108, 9mpan 690 . . . . . . . . . . . . 13 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
11 negs0s 27961 . . . . . . . . . . . . . 14 ( -us ‘ 0s ) = 0s
1211breq2i 5097 . . . . . . . . . . . . 13 (( -us𝑁) <s ( -us ‘ 0s ) ↔ ( -us𝑁) <s 0s )
1310, 12bitrdi 287 . . . . . . . . . . . 12 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s 0s ))
1413biimpa 476 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) <s 0s )
15 sltasym 27680 . . . . . . . . . . . 12 ((( -us𝑁) ∈ No ∧ 0s No ) → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
168, 15mpan2 691 . . . . . . . . . . 11 (( -us𝑁) ∈ No → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
177, 14, 16sylc 65 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 0s <s ( -us𝑁))
18 nnsgt0 28260 . . . . . . . . . 10 (( -us𝑁) ∈ ℕs → 0s <s ( -us𝑁))
1917, 18nsyl 140 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ ( -us𝑁) ∈ ℕs)
20 sgt0ne0 27772 . . . . . . . . . . 11 ( 0s <s 𝑁𝑁 ≠ 0s )
2120adantl 481 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → 𝑁 ≠ 0s )
2221neneqd 2931 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 𝑁 = 0s )
23 ioran 985 . . . . . . . . 9 (¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (¬ ( -us𝑁) ∈ ℕs ∧ ¬ 𝑁 = 0s ))
2419, 22, 23sylanbrc 583 . . . . . . . 8 ((𝑁 No ∧ 0s <s 𝑁) → ¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ))
2524pm2.21d 121 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → ((( -us𝑁) ∈ ℕs𝑁 = 0s ) → 𝑁 ∈ ℕs))
265, 25jaod 859 . . . . . 6 ((𝑁 No ∧ 0s <s 𝑁) → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs))
2726ex 412 . . . . 5 (𝑁 No → ( 0s <s 𝑁 → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs)))
2827com23 86 . . . 4 (𝑁 No → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → ( 0s <s 𝑁𝑁 ∈ ℕs)))
2928imp31 417 . . 3 (((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁) → 𝑁 ∈ ℕs)
304, 29impbii 209 . 2 (𝑁 ∈ ℕs ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
31 elzs2 28316 . . . 4 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
32 3orcomb 1093 . . . . . 6 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ))
33 3orass 1089 . . . . . 6 ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3432, 33bitri 275 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3534anbi2i 623 . . . 4 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3631, 35bitri 275 . . 3 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3736anbi1i 624 . 2 ((𝑁 ∈ ℤs ∧ 0s <s 𝑁) ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
3830, 37bitr4i 278 1 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  cfv 6477   No csur 27571   <s cslt 27572   0s c0s 27759   -us cnegs 27954  scnns 28236  sczs 28295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-n0s 28237  df-nns 28238  df-zs 28296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator