MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnzs Structured version   Visualization version   GIF version

Theorem elnnzs 28296
Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elnnzs (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))

Proof of Theorem elnnzs
StepHypRef Expression
1 nnsno 28224 . . . 4 (𝑁 ∈ ℕs𝑁 No )
2 orc 867 . . . 4 (𝑁 ∈ ℕs → (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3 nnsgt0 28238 . . . 4 (𝑁 ∈ ℕs → 0s <s 𝑁)
41, 2, 3jca31 514 . . 3 (𝑁 ∈ ℕs → ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → (𝑁 ∈ ℕs𝑁 ∈ ℕs))
6 negscl 27949 . . . . . . . . . . . 12 (𝑁 No → ( -us𝑁) ∈ No )
76adantr 480 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) ∈ No )
8 0sno 27745 . . . . . . . . . . . . . 14 0s No
9 sltneg 27958 . . . . . . . . . . . . . 14 (( 0s No 𝑁 No ) → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
108, 9mpan 690 . . . . . . . . . . . . 13 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s ( -us ‘ 0s )))
11 negs0s 27939 . . . . . . . . . . . . . 14 ( -us ‘ 0s ) = 0s
1211breq2i 5118 . . . . . . . . . . . . 13 (( -us𝑁) <s ( -us ‘ 0s ) ↔ ( -us𝑁) <s 0s )
1310, 12bitrdi 287 . . . . . . . . . . . 12 (𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁) <s 0s ))
1413biimpa 476 . . . . . . . . . . 11 ((𝑁 No ∧ 0s <s 𝑁) → ( -us𝑁) <s 0s )
15 sltasym 27667 . . . . . . . . . . . 12 ((( -us𝑁) ∈ No ∧ 0s No ) → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
168, 15mpan2 691 . . . . . . . . . . 11 (( -us𝑁) ∈ No → (( -us𝑁) <s 0s → ¬ 0s <s ( -us𝑁)))
177, 14, 16sylc 65 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 0s <s ( -us𝑁))
18 nnsgt0 28238 . . . . . . . . . 10 (( -us𝑁) ∈ ℕs → 0s <s ( -us𝑁))
1917, 18nsyl 140 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ ( -us𝑁) ∈ ℕs)
20 sgt0ne0 27754 . . . . . . . . . . 11 ( 0s <s 𝑁𝑁 ≠ 0s )
2120adantl 481 . . . . . . . . . 10 ((𝑁 No ∧ 0s <s 𝑁) → 𝑁 ≠ 0s )
2221neneqd 2931 . . . . . . . . 9 ((𝑁 No ∧ 0s <s 𝑁) → ¬ 𝑁 = 0s )
23 ioran 985 . . . . . . . . 9 (¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (¬ ( -us𝑁) ∈ ℕs ∧ ¬ 𝑁 = 0s ))
2419, 22, 23sylanbrc 583 . . . . . . . 8 ((𝑁 No ∧ 0s <s 𝑁) → ¬ (( -us𝑁) ∈ ℕs𝑁 = 0s ))
2524pm2.21d 121 . . . . . . 7 ((𝑁 No ∧ 0s <s 𝑁) → ((( -us𝑁) ∈ ℕs𝑁 = 0s ) → 𝑁 ∈ ℕs))
265, 25jaod 859 . . . . . 6 ((𝑁 No ∧ 0s <s 𝑁) → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs))
2726ex 412 . . . . 5 (𝑁 No → ( 0s <s 𝑁 → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → 𝑁 ∈ ℕs)))
2827com23 86 . . . 4 (𝑁 No → ((𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) → ( 0s <s 𝑁𝑁 ∈ ℕs)))
2928imp31 417 . . 3 (((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁) → 𝑁 ∈ ℕs)
304, 29impbii 209 . 2 (𝑁 ∈ ℕs ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
31 elzs2 28294 . . . 4 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
32 3orcomb 1093 . . . . . 6 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ))
33 3orass 1089 . . . . . 6 ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3432, 33bitri 275 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
3534anbi2i 623 . . . 4 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3631, 35bitri 275 . . 3 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
3736anbi1i 624 . 2 ((𝑁 ∈ ℤs ∧ 0s <s 𝑁) ↔ ((𝑁 No ∧ (𝑁 ∈ ℕs ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))) ∧ 0s <s 𝑁))
3830, 37bitr4i 278 1 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514   No csur 27558   <s cslt 27559   0s c0s 27741   -us cnegs 27932  scnns 28214  sczs 28273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-n0s 28215  df-nns 28216  df-zs 28274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator