Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvnttrclselem2 Structured version   Visualization version   GIF version

Theorem fineqvnttrclselem2 35142
Description: Lemma for fineqvnttrclse 35144. (Contributed by BTernaryTau, 12-Jan-2026.)
Hypothesis
Ref Expression
fineqvnttrclselem2.1 𝐹 = (𝑣 ∈ suc suc 𝑁 {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵})
Assertion
Ref Expression
fineqvnttrclselem2 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → (𝐴 +o (𝐹𝐴)) = 𝐵)
Distinct variable groups:   𝑣,𝐵   𝐹,𝑑   𝑣,𝑁   𝐴,𝑑,𝑣   𝐵,𝑑
Allowed substitution hints:   𝐹(𝑣)   𝑁(𝑑)

Proof of Theorem fineqvnttrclselem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4078 . . . . . . 7 (𝐵 ∈ (ω ∖ 1o) → 𝐵 ∈ ω)
2 elnn 7807 . . . . . . . 8 ((𝑁𝐵𝐵 ∈ ω) → 𝑁 ∈ ω)
32ancoms 458 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑁𝐵) → 𝑁 ∈ ω)
41, 3sylan 580 . . . . . 6 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵) → 𝑁 ∈ ω)
543adant3 1132 . . . . 5 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → 𝑁 ∈ ω)
6 fineqvnttrclselem2.1 . . . . . 6 𝐹 = (𝑣 ∈ suc suc 𝑁 {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵})
7 oveq1 7353 . . . . . . . . 9 (𝑣 = 𝐴 → (𝑣 +o 𝑑) = (𝐴 +o 𝑑))
87eqeq1d 2733 . . . . . . . 8 (𝑣 = 𝐴 → ((𝑣 +o 𝑑) = 𝐵 ↔ (𝐴 +o 𝑑) = 𝐵))
98rabbidv 3402 . . . . . . 7 (𝑣 = 𝐴 → {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
109unieqd 4869 . . . . . 6 (𝑣 = 𝐴 {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
11 simp3 1138 . . . . . 6 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ suc suc 𝑁)
12 fineqvnttrclselem1 35141 . . . . . . 7 (𝐵 ∈ (ω ∖ 1o) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
13123ad2ant1 1133 . . . . . 6 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
146, 10, 11, 13fvmptd3 6952 . . . . 5 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁) → (𝐹𝐴) = {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
155, 14syld3an2 1413 . . . 4 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → (𝐹𝐴) = {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
16 nnon 7802 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ On)
171, 16syl 17 . . . . . . . 8 (𝐵 ∈ (ω ∖ 1o) → 𝐵 ∈ On)
18 onelon 6331 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑁𝐵) → 𝑁 ∈ On)
19 onsuc 7743 . . . . . . . . 9 (𝑁 ∈ On → suc 𝑁 ∈ On)
2018, 19syl 17 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑁𝐵) → suc 𝑁 ∈ On)
2117, 20sylan 580 . . . . . . 7 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵) → suc 𝑁 ∈ On)
22 onsuc 7743 . . . . . . . 8 (suc 𝑁 ∈ On → suc suc 𝑁 ∈ On)
23 onelon 6331 . . . . . . . 8 ((suc suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ On)
2422, 23sylan 580 . . . . . . 7 ((suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ On)
2521, 24stoic3 1777 . . . . . 6 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ On)
26173ad2ant1 1133 . . . . . 6 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → 𝐵 ∈ On)
27 simp3 1138 . . . . . . . 8 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ suc suc 𝑁)
28 simpl 482 . . . . . . . . . . 11 ((suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → suc 𝑁 ∈ On)
2924, 28jca 511 . . . . . . . . . 10 ((suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → (𝐴 ∈ On ∧ suc 𝑁 ∈ On))
3021, 29stoic3 1777 . . . . . . . . 9 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → (𝐴 ∈ On ∧ suc 𝑁 ∈ On))
31 onsssuc 6398 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑁 ∈ On) → (𝐴 ⊆ suc 𝑁𝐴 ∈ suc suc 𝑁))
3230, 31syl 17 . . . . . . . 8 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → (𝐴 ⊆ suc 𝑁𝐴 ∈ suc suc 𝑁))
3327, 32mpbird 257 . . . . . . 7 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → 𝐴 ⊆ suc 𝑁)
34 nnord 7804 . . . . . . . . . 10 (𝐵 ∈ ω → Ord 𝐵)
35 ordsucss 7748 . . . . . . . . . 10 (Ord 𝐵 → (𝑁𝐵 → suc 𝑁𝐵))
361, 34, 353syl 18 . . . . . . . . 9 (𝐵 ∈ (ω ∖ 1o) → (𝑁𝐵 → suc 𝑁𝐵))
3736imp 406 . . . . . . . 8 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵) → suc 𝑁𝐵)
38373adant3 1132 . . . . . . 7 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → suc 𝑁𝐵)
3933, 38sstrd 3940 . . . . . 6 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → 𝐴𝐵)
40 oawordeu 8470 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
4125, 26, 39, 40syl21anc 837 . . . . 5 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
42 reusn 4677 . . . . . 6 (∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 ↔ ∃𝑥{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥})
43 unieq 4867 . . . . . . . . 9 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥})
44 unisnv 4876 . . . . . . . . 9 {𝑥} = 𝑥
4543, 44eqtrdi 2782 . . . . . . . 8 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = 𝑥)
46 vsnid 4613 . . . . . . . . 9 𝑥 ∈ {𝑥}
47 eleq2 2820 . . . . . . . . 9 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → (𝑥 ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ↔ 𝑥 ∈ {𝑥}))
4846, 47mpbiri 258 . . . . . . . 8 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → 𝑥 ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
4945, 48eqeltrd 2831 . . . . . . 7 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
5049exlimiv 1931 . . . . . 6 (∃𝑥{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
5142, 50sylbi 217 . . . . 5 (∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
5241, 51syl 17 . . . 4 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
5315, 52eqeltrd 2831 . . 3 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → (𝐹𝐴) ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵})
54 oveq2 7354 . . . . 5 (𝑑 = (𝐹𝐴) → (𝐴 +o 𝑑) = (𝐴 +o (𝐹𝐴)))
5554eqeq1d 2733 . . . 4 (𝑑 = (𝐹𝐴) → ((𝐴 +o 𝑑) = 𝐵 ↔ (𝐴 +o (𝐹𝐴)) = 𝐵))
5655elrab 3642 . . 3 ((𝐹𝐴) ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ↔ ((𝐹𝐴) ∈ On ∧ (𝐴 +o (𝐹𝐴)) = 𝐵))
5753, 56sylib 218 . 2 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → ((𝐹𝐴) ∈ On ∧ (𝐴 +o (𝐹𝐴)) = 𝐵))
5857simprd 495 1 ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁) → (𝐴 +o (𝐹𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  ∃!wreu 3344  {crab 3395  cdif 3894  wss 3897  {csn 4573   cuni 4856  cmpt 5170  Ord word 6305  Oncon0 6306  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796  1oc1o 8378   +o coa 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-en 8870  df-fin 8873
This theorem is referenced by:  fineqvnttrclselem3  35143
  Copyright terms: Public domain W3C validator