| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4082 |
. . . . . . 7
⊢ (𝐵 ∈ (ω ∖
1o) → 𝐵
∈ ω) |
| 2 | | elnn 7810 |
. . . . . . . 8
⊢ ((𝑁 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑁 ∈ ω) |
| 3 | 2 | ancoms 458 |
. . . . . . 7
⊢ ((𝐵 ∈ ω ∧ 𝑁 ∈ 𝐵) → 𝑁 ∈ ω) |
| 4 | 1, 3 | sylan 580 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) → 𝑁 ∈
ω) |
| 5 | 4 | 3adant3 1132 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → 𝑁 ∈ ω) |
| 6 | | fineqvnttrclselem2.1 |
. . . . . 6
⊢ 𝐹 = (𝑣 ∈ suc suc 𝑁 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵}) |
| 7 | | oveq1 7356 |
. . . . . . . . 9
⊢ (𝑣 = 𝐴 → (𝑣 +o 𝑑) = (𝐴 +o 𝑑)) |
| 8 | 7 | eqeq1d 2731 |
. . . . . . . 8
⊢ (𝑣 = 𝐴 → ((𝑣 +o 𝑑) = 𝐵 ↔ (𝐴 +o 𝑑) = 𝐵)) |
| 9 | 8 | rabbidv 3402 |
. . . . . . 7
⊢ (𝑣 = 𝐴 → {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 10 | 9 | unieqd 4871 |
. . . . . 6
⊢ (𝑣 = 𝐴 → ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 11 | | simp3 1138 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝐴
∈ suc suc 𝑁) →
𝐴 ∈ suc suc 𝑁) |
| 12 | | fineqvnttrclselem1 35074 |
. . . . . . 7
⊢ (𝐵 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |
| 13 | 12 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝐴
∈ suc suc 𝑁) →
∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |
| 14 | 6, 10, 11, 13 | fvmptd3 6953 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝐴
∈ suc suc 𝑁) →
(𝐹‘𝐴) = ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 15 | 5, 14 | syld3an2 1413 |
. . . 4
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → (𝐹‘𝐴) = ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 16 | | nnon 7805 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) |
| 17 | 1, 16 | syl 17 |
. . . . . . . 8
⊢ (𝐵 ∈ (ω ∖
1o) → 𝐵
∈ On) |
| 18 | | onelon 6332 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝑁 ∈ 𝐵) → 𝑁 ∈ On) |
| 19 | | onsuc 7746 |
. . . . . . . . 9
⊢ (𝑁 ∈ On → suc 𝑁 ∈ On) |
| 20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝑁 ∈ 𝐵) → suc 𝑁 ∈ On) |
| 21 | 17, 20 | sylan 580 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) → suc 𝑁 ∈ On) |
| 22 | | onsuc 7746 |
. . . . . . . 8
⊢ (suc
𝑁 ∈ On → suc suc
𝑁 ∈
On) |
| 23 | | onelon 6332 |
. . . . . . . 8
⊢ ((suc suc
𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ On) |
| 24 | 22, 23 | sylan 580 |
. . . . . . 7
⊢ ((suc
𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ On) |
| 25 | 21, 24 | stoic3 1776 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ On) |
| 26 | 17 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → 𝐵 ∈ On) |
| 27 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ∈ suc suc 𝑁) |
| 28 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((suc
𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → suc 𝑁 ∈ On) |
| 29 | 24, 28 | jca 511 |
. . . . . . . . . 10
⊢ ((suc
𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁) → (𝐴 ∈ On ∧ suc 𝑁 ∈ On)) |
| 30 | 21, 29 | stoic3 1776 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → (𝐴 ∈ On ∧ suc 𝑁 ∈ On)) |
| 31 | | onsssuc 6399 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ suc 𝑁 ∈ On) → (𝐴 ⊆ suc 𝑁 ↔ 𝐴 ∈ suc suc 𝑁)) |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → (𝐴 ⊆ suc 𝑁 ↔ 𝐴 ∈ suc suc 𝑁)) |
| 33 | 27, 32 | mpbird 257 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ⊆ suc 𝑁) |
| 34 | | nnord 7807 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → Ord 𝐵) |
| 35 | | ordsucss 7751 |
. . . . . . . . . 10
⊢ (Ord
𝐵 → (𝑁 ∈ 𝐵 → suc 𝑁 ⊆ 𝐵)) |
| 36 | 1, 34, 35 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐵 ∈ (ω ∖
1o) → (𝑁
∈ 𝐵 → suc 𝑁 ⊆ 𝐵)) |
| 37 | 36 | imp 406 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) → suc 𝑁 ⊆ 𝐵) |
| 38 | 37 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → suc 𝑁 ⊆ 𝐵) |
| 39 | 33, 38 | sstrd 3946 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → 𝐴 ⊆ 𝐵) |
| 40 | | oawordeu 8473 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵) |
| 41 | 25, 26, 39, 40 | syl21anc 837 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵) |
| 42 | | reusn 4679 |
. . . . . 6
⊢
(∃!𝑑 ∈ On
(𝐴 +o 𝑑) = 𝐵 ↔ ∃𝑥{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥}) |
| 43 | | unieq 4869 |
. . . . . . . . 9
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∪ {𝑥}) |
| 44 | | unisnv 4878 |
. . . . . . . . 9
⊢ ∪ {𝑥}
= 𝑥 |
| 45 | 43, 44 | eqtrdi 2780 |
. . . . . . . 8
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = 𝑥) |
| 46 | | vsnid 4615 |
. . . . . . . . 9
⊢ 𝑥 ∈ {𝑥} |
| 47 | | eleq2 2817 |
. . . . . . . . 9
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → (𝑥 ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ↔ 𝑥 ∈ {𝑥})) |
| 48 | 46, 47 | mpbiri 258 |
. . . . . . . 8
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → 𝑥 ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 49 | 45, 48 | eqeltrd 2828 |
. . . . . . 7
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 50 | 49 | exlimiv 1930 |
. . . . . 6
⊢
(∃𝑥{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑥} → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 51 | 42, 50 | sylbi 217 |
. . . . 5
⊢
(∃!𝑑 ∈ On
(𝐴 +o 𝑑) = 𝐵 → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 52 | 41, 51 | syl 17 |
. . . 4
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → ∪ {𝑑
∈ On ∣ (𝐴
+o 𝑑) = 𝐵} ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 53 | 15, 52 | eqeltrd 2828 |
. . 3
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → (𝐹‘𝐴) ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵}) |
| 54 | | oveq2 7357 |
. . . . 5
⊢ (𝑑 = (𝐹‘𝐴) → (𝐴 +o 𝑑) = (𝐴 +o (𝐹‘𝐴))) |
| 55 | 54 | eqeq1d 2731 |
. . . 4
⊢ (𝑑 = (𝐹‘𝐴) → ((𝐴 +o 𝑑) = 𝐵 ↔ (𝐴 +o (𝐹‘𝐴)) = 𝐵)) |
| 56 | 55 | elrab 3648 |
. . 3
⊢ ((𝐹‘𝐴) ∈ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ↔ ((𝐹‘𝐴) ∈ On ∧ (𝐴 +o (𝐹‘𝐴)) = 𝐵)) |
| 57 | 53, 56 | sylib 218 |
. 2
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → ((𝐹‘𝐴) ∈ On ∧ (𝐴 +o (𝐹‘𝐴)) = 𝐵)) |
| 58 | 57 | simprd 495 |
1
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → (𝐴 +o (𝐹‘𝐴)) = 𝐵) |