Proof of Theorem fineqvnttrclselem3
| Step | Hyp | Ref
| Expression |
| 1 | | fineqvnttrclselem3.3 |
. . . . . . . 8
⊢ 𝐹 = (𝑣 ∈ suc suc 𝑁 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵}) |
| 2 | | oveq1 7356 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑎 → (𝑣 +o 𝑑) = (𝑎 +o 𝑑)) |
| 3 | 2 | eqeq1d 2731 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑎 → ((𝑣 +o 𝑑) = 𝐵 ↔ (𝑎 +o 𝑑) = 𝐵)) |
| 4 | 3 | rabbidv 3402 |
. . . . . . . . 9
⊢ (𝑣 = 𝑎 → {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = {𝑑 ∈ On ∣ (𝑎 +o 𝑑) = 𝐵}) |
| 5 | 4 | unieqd 4871 |
. . . . . . . 8
⊢ (𝑣 = 𝑎 → ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = ∪ {𝑑 ∈ On ∣ (𝑎 +o 𝑑) = 𝐵}) |
| 6 | | elelsuc 6382 |
. . . . . . . . 9
⊢ (𝑎 ∈ suc 𝑁 → 𝑎 ∈ suc suc 𝑁) |
| 7 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑎
∈ suc 𝑁) → 𝑎 ∈ suc suc 𝑁) |
| 8 | | fineqvnttrclselem1 35074 |
. . . . . . . . 9
⊢ (𝐵 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (𝑎 +o 𝑑) = 𝐵} ∈ ω) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑎
∈ suc 𝑁) → ∪ {𝑑
∈ On ∣ (𝑎
+o 𝑑) = 𝐵} ∈
ω) |
| 10 | 1, 5, 7, 9 | fvmptd3 6953 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑎
∈ suc 𝑁) → (𝐹‘𝑎) = ∪ {𝑑 ∈ On ∣ (𝑎 +o 𝑑) = 𝐵}) |
| 11 | 10, 9 | eqeltrd 2828 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑎
∈ suc 𝑁) → (𝐹‘𝑎) ∈ ω) |
| 12 | 11 | 3adant2 1131 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝐹‘𝑎) ∈ ω) |
| 13 | | fineqvnttrclselem3.2 |
. . . . 5
⊢ 𝐴 = ω |
| 14 | 12, 13 | eleqtrrdi 2839 |
. . . 4
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝐹‘𝑎) ∈ 𝐴) |
| 15 | 1 | fineqvnttrclselem2 35075 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc suc 𝑁) → (𝑎 +o (𝐹‘𝑎)) = 𝐵) |
| 16 | 6, 15 | syl3an3 1165 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝑎 +o (𝐹‘𝑎)) = 𝐵) |
| 17 | | eldifi 4082 |
. . . . . . . . 9
⊢ (𝐵 ∈ (ω ∖
1o) → 𝐵
∈ ω) |
| 18 | | elnn 7810 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑁 ∈ ω) |
| 19 | 18 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ω ∧ 𝑁 ∈ 𝐵) → 𝑁 ∈ ω) |
| 20 | 17, 19 | sylan 580 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) → 𝑁 ∈
ω) |
| 21 | | peano2 7823 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → suc 𝑁 ∈
ω) |
| 22 | | nnord 7807 |
. . . . . . . . . 10
⊢ (suc
𝑁 ∈ ω → Ord
suc 𝑁) |
| 23 | | ordsucelsuc 7755 |
. . . . . . . . . 10
⊢ (Ord suc
𝑁 → (𝑎 ∈ suc 𝑁 ↔ suc 𝑎 ∈ suc suc 𝑁)) |
| 24 | 21, 22, 23 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → (𝑎 ∈ suc 𝑁 ↔ suc 𝑎 ∈ suc suc 𝑁)) |
| 25 | 24 | biimpa 476 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁) → suc 𝑎 ∈ suc suc 𝑁) |
| 26 | 20, 25 | stoic3 1776 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → suc 𝑎 ∈ suc suc 𝑁) |
| 27 | 1 | fineqvnttrclselem2 35075 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ suc 𝑎 ∈ suc suc 𝑁) → (suc 𝑎 +o (𝐹‘suc 𝑎)) = 𝐵) |
| 28 | 26, 27 | syld3an3 1411 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (suc 𝑎 +o (𝐹‘suc 𝑎)) = 𝐵) |
| 29 | 16, 28 | eqtr4d 2767 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝑎 +o (𝐹‘𝑎)) = (suc 𝑎 +o (𝐹‘suc 𝑎))) |
| 30 | 20, 21 | syl 17 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) → suc 𝑁 ∈
ω) |
| 31 | | elnn 7810 |
. . . . . . . 8
⊢ ((𝑎 ∈ suc 𝑁 ∧ suc 𝑁 ∈ ω) → 𝑎 ∈ ω) |
| 32 | 31 | ancoms 458 |
. . . . . . 7
⊢ ((suc
𝑁 ∈ ω ∧
𝑎 ∈ suc 𝑁) → 𝑎 ∈ ω) |
| 33 | 30, 32 | stoic3 1776 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → 𝑎 ∈ ω) |
| 34 | 20 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → 𝑁 ∈ ω) |
| 35 | | oveq1 7356 |
. . . . . . . . . . . 12
⊢ (𝑣 = suc 𝑎 → (𝑣 +o 𝑑) = (suc 𝑎 +o 𝑑)) |
| 36 | 35 | eqeq1d 2731 |
. . . . . . . . . . 11
⊢ (𝑣 = suc 𝑎 → ((𝑣 +o 𝑑) = 𝐵 ↔ (suc 𝑎 +o 𝑑) = 𝐵)) |
| 37 | 36 | rabbidv 3402 |
. . . . . . . . . 10
⊢ (𝑣 = suc 𝑎 → {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = {𝑑 ∈ On ∣ (suc 𝑎 +o 𝑑) = 𝐵}) |
| 38 | 37 | unieqd 4871 |
. . . . . . . . 9
⊢ (𝑣 = suc 𝑎 → ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵} = ∪ {𝑑 ∈ On ∣ (suc 𝑎 +o 𝑑) = 𝐵}) |
| 39 | 25 | 3adant1 1130 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝑎
∈ suc 𝑁) → suc
𝑎 ∈ suc suc 𝑁) |
| 40 | | fineqvnttrclselem1 35074 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (suc 𝑎 +o 𝑑) = 𝐵} ∈ ω) |
| 41 | 40 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝑎
∈ suc 𝑁) → ∪ {𝑑
∈ On ∣ (suc 𝑎
+o 𝑑) = 𝐵} ∈
ω) |
| 42 | 1, 38, 39, 41 | fvmptd3 6953 |
. . . . . . . 8
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝑎
∈ suc 𝑁) → (𝐹‘suc 𝑎) = ∪ {𝑑 ∈ On ∣ (suc 𝑎 +o 𝑑) = 𝐵}) |
| 43 | 42, 41 | eqeltrd 2828 |
. . . . . . 7
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ ω ∧ 𝑎
∈ suc 𝑁) → (𝐹‘suc 𝑎) ∈ ω) |
| 44 | 34, 43 | syld3an2 1413 |
. . . . . 6
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝐹‘suc 𝑎) ∈ ω) |
| 45 | | nnacom 8535 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → (𝑎 +o (𝐹‘suc 𝑎)) = ((𝐹‘suc 𝑎) +o 𝑎)) |
| 46 | 45 | suceqd 6374 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → suc (𝑎 +o (𝐹‘suc 𝑎)) = suc ((𝐹‘suc 𝑎) +o 𝑎)) |
| 47 | | nnasuc 8524 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → (𝑎 +o suc (𝐹‘suc 𝑎)) = suc (𝑎 +o (𝐹‘suc 𝑎))) |
| 48 | | nnasuc 8524 |
. . . . . . . . . . . 12
⊢ (((𝐹‘suc 𝑎) ∈ ω ∧ 𝑎 ∈ ω) → ((𝐹‘suc 𝑎) +o suc 𝑎) = suc ((𝐹‘suc 𝑎) +o 𝑎)) |
| 49 | 48 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → ((𝐹‘suc 𝑎) +o suc 𝑎) = suc ((𝐹‘suc 𝑎) +o 𝑎)) |
| 50 | 46, 47, 49 | 3eqtr4d 2774 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → (𝑎 +o suc (𝐹‘suc 𝑎)) = ((𝐹‘suc 𝑎) +o suc 𝑎)) |
| 51 | | peano2 7823 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ω → suc 𝑎 ∈
ω) |
| 52 | | nnacom 8535 |
. . . . . . . . . . 11
⊢ ((suc
𝑎 ∈ ω ∧
(𝐹‘suc 𝑎) ∈ ω) → (suc
𝑎 +o (𝐹‘suc 𝑎)) = ((𝐹‘suc 𝑎) +o suc 𝑎)) |
| 53 | 51, 52 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → (suc 𝑎 +o (𝐹‘suc 𝑎)) = ((𝐹‘suc 𝑎) +o suc 𝑎)) |
| 54 | 50, 53 | eqtr4d 2767 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → (𝑎 +o suc (𝐹‘suc 𝑎)) = (suc 𝑎 +o (𝐹‘suc 𝑎))) |
| 55 | 54 | 3adant2 1131 |
. . . . . . . 8
⊢ ((𝑎 ∈ ω ∧ (𝐹‘𝑎) ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → (𝑎 +o suc (𝐹‘suc 𝑎)) = (suc 𝑎 +o (𝐹‘suc 𝑎))) |
| 56 | 55 | eqeq2d 2740 |
. . . . . . 7
⊢ ((𝑎 ∈ ω ∧ (𝐹‘𝑎) ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → ((𝑎 +o (𝐹‘𝑎)) = (𝑎 +o suc (𝐹‘suc 𝑎)) ↔ (𝑎 +o (𝐹‘𝑎)) = (suc 𝑎 +o (𝐹‘suc 𝑎)))) |
| 57 | | peano2 7823 |
. . . . . . . 8
⊢ ((𝐹‘suc 𝑎) ∈ ω → suc (𝐹‘suc 𝑎) ∈ ω) |
| 58 | | nnacan 8546 |
. . . . . . . 8
⊢ ((𝑎 ∈ ω ∧ (𝐹‘𝑎) ∈ ω ∧ suc (𝐹‘suc 𝑎) ∈ ω) → ((𝑎 +o (𝐹‘𝑎)) = (𝑎 +o suc (𝐹‘suc 𝑎)) ↔ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎))) |
| 59 | 57, 58 | syl3an3 1165 |
. . . . . . 7
⊢ ((𝑎 ∈ ω ∧ (𝐹‘𝑎) ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → ((𝑎 +o (𝐹‘𝑎)) = (𝑎 +o suc (𝐹‘suc 𝑎)) ↔ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎))) |
| 60 | 56, 59 | bitr3d 281 |
. . . . . 6
⊢ ((𝑎 ∈ ω ∧ (𝐹‘𝑎) ∈ ω ∧ (𝐹‘suc 𝑎) ∈ ω) → ((𝑎 +o (𝐹‘𝑎)) = (suc 𝑎 +o (𝐹‘suc 𝑎)) ↔ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎))) |
| 61 | 33, 12, 44, 60 | syl3anc 1373 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → ((𝑎 +o (𝐹‘𝑎)) = (suc 𝑎 +o (𝐹‘suc 𝑎)) ↔ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎))) |
| 62 | 29, 61 | mpbid 232 |
. . . 4
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝐹‘𝑎) = suc (𝐹‘suc 𝑎)) |
| 63 | | fvex 6835 |
. . . . 5
⊢ (𝐹‘𝑎) ∈ V |
| 64 | | fvex 6835 |
. . . . 5
⊢ (𝐹‘suc 𝑎) ∈ V |
| 65 | | eleq1 2816 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑎) → (𝑥 ∈ 𝐴 ↔ (𝐹‘𝑎) ∈ 𝐴)) |
| 66 | | eqeq1 2733 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑎) → (𝑥 = suc 𝑦 ↔ (𝐹‘𝑎) = suc 𝑦)) |
| 67 | 65, 66 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦) ↔ ((𝐹‘𝑎) ∈ 𝐴 ∧ (𝐹‘𝑎) = suc 𝑦))) |
| 68 | | suceq 6375 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘suc 𝑎) → suc 𝑦 = suc (𝐹‘suc 𝑎)) |
| 69 | 68 | eqeq2d 2740 |
. . . . . 6
⊢ (𝑦 = (𝐹‘suc 𝑎) → ((𝐹‘𝑎) = suc 𝑦 ↔ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎))) |
| 70 | 69 | anbi2d 630 |
. . . . 5
⊢ (𝑦 = (𝐹‘suc 𝑎) → (((𝐹‘𝑎) ∈ 𝐴 ∧ (𝐹‘𝑎) = suc 𝑦) ↔ ((𝐹‘𝑎) ∈ 𝐴 ∧ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎)))) |
| 71 | | fineqvnttrclselem3.1 |
. . . . 5
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦)} |
| 72 | 63, 64, 67, 70, 71 | brab 5486 |
. . . 4
⊢ ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ↔ ((𝐹‘𝑎) ∈ 𝐴 ∧ (𝐹‘𝑎) = suc (𝐹‘suc 𝑎))) |
| 73 | 14, 62, 72 | sylanbrc 583 |
. . 3
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁) → (𝐹‘𝑎)𝑅(𝐹‘suc 𝑎)) |
| 74 | 73 | 3expia 1121 |
. 2
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) → (𝑎 ∈ suc 𝑁 → (𝐹‘𝑎)𝑅(𝐹‘suc 𝑎))) |
| 75 | 74 | ralrimiv 3120 |
1
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ 𝑁
∈ 𝐵) →
∀𝑎 ∈ suc 𝑁(𝐹‘𝑎)𝑅(𝐹‘suc 𝑎)) |