| Step | Hyp | Ref
| Expression |
| 1 | | ominf 9153 |
. . . . . 6
⊢ ¬
ω ∈ Fin |
| 2 | | 1onn 8558 |
. . . . . . 7
⊢
1o ∈ ω |
| 3 | | nnfi 9081 |
. . . . . . 7
⊢
(1o ∈ ω → 1o ∈
Fin) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . 6
⊢
1o ∈ Fin |
| 5 | | difinf 9200 |
. . . . . 6
⊢ ((¬
ω ∈ Fin ∧ 1o ∈ Fin) → ¬ (ω
∖ 1o) ∈ Fin) |
| 6 | 1, 4, 5 | mp2an 692 |
. . . . 5
⊢ ¬
(ω ∖ 1o) ∈ Fin |
| 7 | | eleq2 2817 |
. . . . 5
⊢ (Fin = V
→ ((ω ∖ 1o) ∈ Fin ↔ (ω ∖
1o) ∈ V)) |
| 8 | 6, 7 | mtbii 326 |
. . . 4
⊢ (Fin = V
→ ¬ (ω ∖ 1o) ∈ V) |
| 9 | | difss 4087 |
. . . . . . . 8
⊢ (ω
∖ 1o) ⊆ ω |
| 10 | | fineqvnttrclse.2 |
. . . . . . . 8
⊢ 𝐴 = ω |
| 11 | 9, 10 | sseqtrri 3985 |
. . . . . . 7
⊢ (ω
∖ 1o) ⊆ 𝐴 |
| 12 | | eldifi 4082 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (ω ∖
1o) → 𝑢
∈ ω) |
| 13 | | eldifn 4083 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (ω ∖
1o) → ¬ 𝑢 ∈ 1o) |
| 14 | | 0lt1o 8422 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ 1o |
| 15 | | eleq1 2816 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = ∅ → (𝑢 ∈ 1o ↔
∅ ∈ 1o)) |
| 16 | 14, 15 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = ∅ → 𝑢 ∈
1o) |
| 17 | 16 | necon3bi 2951 |
. . . . . . . . . . . . 13
⊢ (¬
𝑢 ∈ 1o
→ 𝑢 ≠
∅) |
| 18 | 13, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (ω ∖
1o) → 𝑢
≠ ∅) |
| 19 | | nnsuc 7817 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ ω ∧ 𝑢 ≠ ∅) →
∃𝑛 ∈ ω
𝑢 = suc 𝑛) |
| 20 | | eqcom 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = suc 𝑛 ↔ suc 𝑛 = 𝑢) |
| 21 | 20 | rexbii 3076 |
. . . . . . . . . . . . 13
⊢
(∃𝑛 ∈
ω 𝑢 = suc 𝑛 ↔ ∃𝑛 ∈ ω suc 𝑛 = 𝑢) |
| 22 | 19, 21 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ω ∧ 𝑢 ≠ ∅) →
∃𝑛 ∈ ω suc
𝑛 = 𝑢) |
| 23 | 12, 18, 22 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (ω ∖
1o) → ∃𝑛 ∈ ω suc 𝑛 = 𝑢) |
| 24 | | sucexg 7741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ V → suc 𝑛 ∈ V) |
| 25 | 24 | elv 3441 |
. . . . . . . . . . . . . . . . 17
⊢ suc 𝑛 ∈ V |
| 26 | 25 | sucex 7742 |
. . . . . . . . . . . . . . . 16
⊢ suc suc
𝑛 ∈ V |
| 27 | 26 | mptex 7159 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) ∈ V |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) ∈ V) |
| 29 | | fineqvnttrclselem1 35074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} ∈ ω) |
| 30 | 29 | elexd 3460 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} ∈ V) |
| 31 | 30 | ralrimivw 3125 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (ω ∖
1o) → ∀𝑣 ∈ suc suc 𝑛∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} ∈ V) |
| 32 | | eqid 2729 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) |
| 33 | 32 | fnmpt 6622 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑣 ∈
suc suc 𝑛∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢} ∈ V → (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) Fn suc suc 𝑛) |
| 34 | 31, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ (ω ∖
1o) → (𝑣
∈ suc suc 𝑛 ↦
∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) Fn suc suc 𝑛) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) Fn suc suc 𝑛) |
| 36 | | nnon 7805 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ ω → 𝑢 ∈ On) |
| 37 | 12, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ (ω ∖
1o) → 𝑢
∈ On) |
| 38 | | eloni 6317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ On → Ord 𝑢) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (ω ∖
1o) → Ord 𝑢) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → Ord 𝑢) |
| 41 | | ordeq 6314 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑛 = 𝑢 → (Ord suc 𝑛 ↔ Ord 𝑢)) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → (Ord suc 𝑛 ↔ Ord 𝑢)) |
| 43 | 40, 42 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → Ord suc 𝑛) |
| 44 | | 0elsuc 7768 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord suc
𝑛 → ∅ ∈ suc
suc 𝑛) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ∅ ∈
suc suc 𝑛) |
| 46 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → 𝑢 ∈ (ω ∖
1o)) |
| 47 | | oveq1 7356 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = ∅ → (𝑣 +o 𝑑) = (∅ +o 𝑑)) |
| 48 | 47 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = ∅ → ((𝑣 +o 𝑑) = 𝑢 ↔ (∅ +o 𝑑) = 𝑢)) |
| 49 | 48 | rabbidv 3402 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = ∅ → {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} = {𝑑 ∈ On ∣ (∅ +o
𝑑) = 𝑢}) |
| 50 | 49 | unieqd 4871 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = ∅ → ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢} = ∪
{𝑑 ∈ On ∣
(∅ +o 𝑑) =
𝑢}) |
| 51 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((∅
∈ suc suc 𝑛 ∧
𝑢 ∈ (ω ∖
1o)) → ∅ ∈ suc suc 𝑛) |
| 52 | | fineqvnttrclselem1 35074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (∅ +o
𝑑) = 𝑢} ∈ ω) |
| 53 | 52 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((∅
∈ suc suc 𝑛 ∧
𝑢 ∈ (ω ∖
1o)) → ∪ {𝑑 ∈ On ∣ (∅ +o
𝑑) = 𝑢} ∈ ω) |
| 54 | 32, 50, 51, 53 | fvmptd3 6953 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∅
∈ suc suc 𝑛 ∧
𝑢 ∈ (ω ∖
1o)) → ((𝑣
∈ suc suc 𝑛 ↦
∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅) = ∪ {𝑑
∈ On ∣ (∅ +o 𝑑) = 𝑢}) |
| 55 | | oa0r 8456 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 ∈ On → (∅
+o 𝑑) = 𝑑) |
| 56 | 55 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 ∈ On → ((∅
+o 𝑑) = 𝑢 ↔ 𝑑 = 𝑢)) |
| 57 | 56 | rabbiia 3398 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑑 ∈ On ∣ (∅
+o 𝑑) = 𝑢} = {𝑑 ∈ On ∣ 𝑑 = 𝑢} |
| 58 | | rabsn 4673 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ On → {𝑑 ∈ On ∣ 𝑑 = 𝑢} = {𝑢}) |
| 59 | 57, 58 | eqtrid 2776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ On → {𝑑 ∈ On ∣ (∅
+o 𝑑) = 𝑢} = {𝑢}) |
| 60 | 59 | unieqd 4871 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ On → ∪ {𝑑
∈ On ∣ (∅ +o 𝑑) = 𝑢} = ∪ {𝑢}) |
| 61 | | unisnv 4878 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ {𝑢}
= 𝑢 |
| 62 | 60, 61 | eqtrdi 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ On → ∪ {𝑑
∈ On ∣ (∅ +o 𝑑) = 𝑢} = 𝑢) |
| 63 | 37, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (∅ +o
𝑑) = 𝑢} = 𝑢) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∅
∈ suc suc 𝑛 ∧
𝑢 ∈ (ω ∖
1o)) → ∪ {𝑑 ∈ On ∣ (∅ +o
𝑑) = 𝑢} = 𝑢) |
| 65 | 54, 64 | eqtrd 2764 |
. . . . . . . . . . . . . . . . 17
⊢ ((∅
∈ suc suc 𝑛 ∧
𝑢 ∈ (ω ∖
1o)) → ((𝑣
∈ suc suc 𝑛 ↦
∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅) = 𝑢) |
| 66 | 45, 46, 65 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢})‘∅) = 𝑢) |
| 67 | | oveq1 7356 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = suc 𝑛 → (𝑣 +o 𝑑) = (suc 𝑛 +o 𝑑)) |
| 68 | 67 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = suc 𝑛 → ((𝑣 +o 𝑑) = 𝑢 ↔ (suc 𝑛 +o 𝑑) = 𝑢)) |
| 69 | 68 | rabbidv 3402 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = suc 𝑛 → {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} = {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢}) |
| 70 | 69 | unieqd 4871 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = suc 𝑛 → ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} = ∪ {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢}) |
| 71 | 25 | sucid 6391 |
. . . . . . . . . . . . . . . . . . . 20
⊢ suc 𝑛 ∈ suc suc 𝑛 |
| 72 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (ω ∖
1o) → suc 𝑛
∈ suc suc 𝑛) |
| 73 | | fineqvnttrclselem1 35074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢} ∈ ω) |
| 74 | 32, 70, 72, 73 | fvmptd3 6953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (ω ∖
1o) → ((𝑣
∈ suc suc 𝑛 ↦
∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛) = ∪ {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢}) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢})‘suc 𝑛) = ∪ {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢}) |
| 76 | | oveq1 7356 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (suc
𝑛 = 𝑢 → (suc 𝑛 +o 𝑑) = (𝑢 +o 𝑑)) |
| 77 | 76 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (suc
𝑛 = 𝑢 → ((suc 𝑛 +o 𝑑) = 𝑢 ↔ (𝑢 +o 𝑑) = 𝑢)) |
| 78 | 77 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑢 ∈ On ∧ suc 𝑛 = 𝑢) ∧ 𝑑 ∈ On) → ((suc 𝑛 +o 𝑑) = 𝑢 ↔ (𝑢 +o 𝑑) = 𝑢)) |
| 79 | | oa0 8434 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑢 ∈ On → (𝑢 +o ∅) = 𝑢) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On) → (𝑢 +o ∅) = 𝑢) |
| 81 | | oveq2 7357 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = ∅ → (𝑢 +o 𝑑) = (𝑢 +o ∅)) |
| 82 | 81 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = ∅ → ((𝑢 +o 𝑑) = 𝑢 ↔ (𝑢 +o ∅) = 𝑢)) |
| 83 | 80, 82 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On) → (𝑑 = ∅ → (𝑢 +o 𝑑) = 𝑢)) |
| 84 | | oveq2 7357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 = 𝑑 → (𝑢 +o 𝑠) = (𝑢 +o 𝑑)) |
| 85 | 84 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 = 𝑑 → ((𝑢 +o 𝑠) = 𝑢 ↔ (𝑢 +o 𝑑) = 𝑢)) |
| 86 | | oveq2 7357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 = ∅ → (𝑢 +o 𝑠) = (𝑢 +o ∅)) |
| 87 | 86 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 = ∅ → ((𝑢 +o 𝑠) = 𝑢 ↔ (𝑢 +o ∅) = 𝑢)) |
| 88 | | ssid 3958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑢 ⊆ 𝑢 |
| 89 | | oawordeu 8473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑢 ∈ On ∧ 𝑢 ∈ On) ∧ 𝑢 ⊆ 𝑢) → ∃!𝑠 ∈ On (𝑢 +o 𝑠) = 𝑢) |
| 90 | 88, 89 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 ∈ On ∧ 𝑢 ∈ On) → ∃!𝑠 ∈ On (𝑢 +o 𝑠) = 𝑢) |
| 91 | 90 | anidms 566 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ∈ On → ∃!𝑠 ∈ On (𝑢 +o 𝑠) = 𝑢) |
| 92 | 91 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On ∧ (𝑢 +o 𝑑) = 𝑢) → ∃!𝑠 ∈ On (𝑢 +o 𝑠) = 𝑢) |
| 93 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On ∧ (𝑢 +o 𝑑) = 𝑢) → 𝑑 ∈ On) |
| 94 | | 0elon 6362 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ On |
| 95 | 94 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On ∧ (𝑢 +o 𝑑) = 𝑢) → ∅ ∈ On) |
| 96 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On ∧ (𝑢 +o 𝑑) = 𝑢) → (𝑢 +o 𝑑) = 𝑢) |
| 97 | 79 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On ∧ (𝑢 +o 𝑑) = 𝑢) → (𝑢 +o ∅) = 𝑢) |
| 98 | 85, 87, 92, 93, 95, 96, 97 | reu2eqd 3696 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On ∧ (𝑢 +o 𝑑) = 𝑢) → 𝑑 = ∅) |
| 99 | 98 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On) → ((𝑢 +o 𝑑) = 𝑢 → 𝑑 = ∅)) |
| 100 | 83, 99 | impbid 212 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑢 ∈ On ∧ 𝑑 ∈ On) → (𝑑 = ∅ ↔ (𝑢 +o 𝑑) = 𝑢)) |
| 101 | 100 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑢 ∈ On ∧ suc 𝑛 = 𝑢) ∧ 𝑑 ∈ On) → (𝑑 = ∅ ↔ (𝑢 +o 𝑑) = 𝑢)) |
| 102 | 78, 101 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑢 ∈ On ∧ suc 𝑛 = 𝑢) ∧ 𝑑 ∈ On) → ((suc 𝑛 +o 𝑑) = 𝑢 ↔ 𝑑 = ∅)) |
| 103 | 102 | rabbidva 3401 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ On ∧ suc 𝑛 = 𝑢) → {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢} = {𝑑 ∈ On ∣ 𝑑 = ∅}) |
| 104 | 103 | unieqd 4871 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ On ∧ suc 𝑛 = 𝑢) → ∪ {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢} = ∪ {𝑑 ∈ On ∣ 𝑑 = ∅}) |
| 105 | | rabsn 4673 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∅
∈ On → {𝑑 ∈
On ∣ 𝑑 = ∅} =
{∅}) |
| 106 | 94, 105 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑑 ∈ On ∣ 𝑑 = ∅} =
{∅} |
| 107 | 106 | unieqi 4870 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ {𝑑
∈ On ∣ 𝑑 =
∅} = ∪ {∅} |
| 108 | | 0ex 5246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅
∈ V |
| 109 | 108 | unisn 4877 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ {∅} = ∅ |
| 110 | 107, 109 | eqtri 2752 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ {𝑑
∈ On ∣ 𝑑 =
∅} = ∅ |
| 111 | 104, 110 | eqtrdi 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ On ∧ suc 𝑛 = 𝑢) → ∪ {𝑑 ∈ On ∣ (suc 𝑛 +o 𝑑) = 𝑢} = ∅) |
| 112 | 37, 111 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ∪ {𝑑
∈ On ∣ (suc 𝑛
+o 𝑑) = 𝑢} = ∅) |
| 113 | 75, 112 | eqtrd 2764 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢})‘suc 𝑛) = ∅) |
| 114 | 66, 113 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → (((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢})‘∅) = 𝑢 ∧ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛) = ∅)) |
| 115 | | vex 3440 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑛 ∈ V |
| 116 | 115 | sucid 6391 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑛 ∈ suc 𝑛 |
| 117 | | eleq2 2817 |
. . . . . . . . . . . . . . . . 17
⊢ (suc
𝑛 = 𝑢 → (𝑛 ∈ suc 𝑛 ↔ 𝑛 ∈ 𝑢)) |
| 118 | 116, 117 | mpbii 233 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑛 = 𝑢 → 𝑛 ∈ 𝑢) |
| 119 | | fineqvnttrclse.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦)} |
| 120 | | oveq2 7357 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 = 𝑒 → (𝑣 +o 𝑑) = (𝑣 +o 𝑒)) |
| 121 | 120 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑒 → ((𝑣 +o 𝑑) = 𝑢 ↔ (𝑣 +o 𝑒) = 𝑢)) |
| 122 | 121 | cbvrabv 3405 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢} = {𝑒 ∈ On ∣ (𝑣 +o 𝑒) = 𝑢} |
| 123 | 122 | unieqi 4870 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢} = ∪
{𝑒 ∈ On ∣ (𝑣 +o 𝑒) = 𝑢} |
| 124 | 123 | mpteq2i 5188 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑒 ∈ On ∣ (𝑣 +o 𝑒) = 𝑢}) |
| 125 | 119, 10, 124 | fineqvnttrclselem3 35076 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ 𝑛
∈ 𝑢) →
∀𝑎 ∈ suc 𝑛((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)𝑅((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎)) |
| 126 | 118, 125 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ∀𝑎 ∈ suc 𝑛((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)𝑅((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎)) |
| 127 | 35, 114, 126 | 3jca 1128 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑
∈ On ∣ (𝑣
+o 𝑑) = 𝑢}) Fn suc suc 𝑛 ∧ (((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅) = 𝑢 ∧ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)𝑅((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎))) |
| 128 | | fneq1 6573 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (𝑓 Fn suc suc 𝑛 ↔ (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) Fn suc suc 𝑛)) |
| 129 | | fveq1 6821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (𝑓‘∅) = ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅)) |
| 130 | 129 | eqeq1d 2731 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → ((𝑓‘∅) = 𝑢 ↔ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅) = 𝑢)) |
| 131 | | fveq1 6821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (𝑓‘suc 𝑛) = ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛)) |
| 132 | 131 | eqeq1d 2731 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → ((𝑓‘suc 𝑛) = ∅ ↔ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛) = ∅)) |
| 133 | 130, 132 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ↔ (((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅) = 𝑢 ∧ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛) = ∅))) |
| 134 | | fveq1 6821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (𝑓‘𝑎) = ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)) |
| 135 | | fveq1 6821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (𝑓‘suc 𝑎) = ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎)) |
| 136 | 134, 135 | breq12d 5105 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → ((𝑓‘𝑎)𝑅(𝑓‘suc 𝑎) ↔ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)𝑅((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎))) |
| 137 | 136 | ralbidv 3152 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → (∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)𝑅((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎))) |
| 138 | 128, 133,
137 | 3anbi123d 1438 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) → ((𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢}) Fn suc suc 𝑛 ∧ (((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘∅) = 𝑢 ∧ ((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘𝑎)𝑅((𝑣 ∈ suc suc 𝑛 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝑢})‘suc 𝑎)))) |
| 139 | 28, 127, 138 | spcedv 3553 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ (ω ∖
1o) ∧ suc 𝑛
= 𝑢) → ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 140 | 139 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (ω ∖
1o) → (suc 𝑛 = 𝑢 → ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 141 | 140 | reximdv 3144 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (ω ∖
1o) → (∃𝑛 ∈ ω suc 𝑛 = 𝑢 → ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 142 | 23, 141 | mpd 15 |
. . . . . . . . . 10
⊢ (𝑢 ∈ (ω ∖
1o) → ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 143 | | brttrcl2 9610 |
. . . . . . . . . 10
⊢ (𝑢t++𝑅∅ ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑢 ∧ (𝑓‘suc 𝑛) = ∅) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 144 | 142, 143 | sylibr 234 |
. . . . . . . . 9
⊢ (𝑢 ∈ (ω ∖
1o) → 𝑢t++𝑅∅) |
| 145 | 119 | relopabiv 5763 |
. . . . . . . . . . . 12
⊢ Rel 𝑅 |
| 146 | 119 | dmeqi 5847 |
. . . . . . . . . . . . 13
⊢ dom 𝑅 = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦)} |
| 147 | | dmopabss 5861 |
. . . . . . . . . . . . 13
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦)} ⊆ 𝐴 |
| 148 | 146, 147 | eqsstri 3982 |
. . . . . . . . . . . 12
⊢ dom 𝑅 ⊆ 𝐴 |
| 149 | | relssres 5973 |
. . . . . . . . . . . 12
⊢ ((Rel
𝑅 ∧ dom 𝑅 ⊆ 𝐴) → (𝑅 ↾ 𝐴) = 𝑅) |
| 150 | 145, 148,
149 | mp2an 692 |
. . . . . . . . . . 11
⊢ (𝑅 ↾ 𝐴) = 𝑅 |
| 151 | | ttrcleq 9605 |
. . . . . . . . . . 11
⊢ ((𝑅 ↾ 𝐴) = 𝑅 → t++(𝑅 ↾ 𝐴) = t++𝑅) |
| 152 | 150, 151 | ax-mp 5 |
. . . . . . . . . 10
⊢ t++(𝑅 ↾ 𝐴) = t++𝑅 |
| 153 | 152 | breqi 5098 |
. . . . . . . . 9
⊢ (𝑢t++(𝑅 ↾ 𝐴)∅ ↔ 𝑢t++𝑅∅) |
| 154 | 144, 153 | sylibr 234 |
. . . . . . . 8
⊢ (𝑢 ∈ (ω ∖
1o) → 𝑢t++(𝑅 ↾ 𝐴)∅) |
| 155 | 154 | rgen 3046 |
. . . . . . 7
⊢
∀𝑢 ∈
(ω ∖ 1o)𝑢t++(𝑅 ↾ 𝐴)∅ |
| 156 | | ssrab 4024 |
. . . . . . 7
⊢ ((ω
∖ 1o) ⊆ {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ↔ ((ω ∖
1o) ⊆ 𝐴
∧ ∀𝑢 ∈
(ω ∖ 1o)𝑢t++(𝑅 ↾ 𝐴)∅)) |
| 157 | 11, 155, 156 | mpbir2an 711 |
. . . . . 6
⊢ (ω
∖ 1o) ⊆ {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} |
| 158 | | ssexg 5262 |
. . . . . 6
⊢
(((ω ∖ 1o) ⊆ {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∧ {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V) → (ω ∖
1o) ∈ V) |
| 159 | 157, 158 | mpan 690 |
. . . . 5
⊢ ({𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V → (ω ∖
1o) ∈ V) |
| 160 | 159 | con3i 154 |
. . . 4
⊢ (¬
(ω ∖ 1o) ∈ V → ¬ {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V) |
| 161 | | peano1 7822 |
. . . . . . 7
⊢ ∅
∈ ω |
| 162 | 161, 10 | eleqtrri 2827 |
. . . . . 6
⊢ ∅
∈ 𝐴 |
| 163 | | breq2 5096 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → (𝑢t++(𝑅 ↾ 𝐴)𝑡 ↔ 𝑢t++(𝑅 ↾ 𝐴)∅)) |
| 164 | 163 | rabbidv 3402 |
. . . . . . . 8
⊢ (𝑡 = ∅ → {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} = {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅}) |
| 165 | 164 | eleq1d 2813 |
. . . . . . 7
⊢ (𝑡 = ∅ → ({𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} ∈ V ↔ {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V)) |
| 166 | 165 | rspcv 3573 |
. . . . . 6
⊢ (∅
∈ 𝐴 →
(∀𝑡 ∈ 𝐴 {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} ∈ V → {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V)) |
| 167 | 162, 166 | ax-mp 5 |
. . . . 5
⊢
(∀𝑡 ∈
𝐴 {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} ∈ V → {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V) |
| 168 | 167 | con3i 154 |
. . . 4
⊢ (¬
{𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)∅} ∈ V → ¬
∀𝑡 ∈ 𝐴 {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} ∈ V) |
| 169 | 8, 160, 168 | 3syl 18 |
. . 3
⊢ (Fin = V
→ ¬ ∀𝑡
∈ 𝐴 {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} ∈ V) |
| 170 | | df-se 5573 |
. . 3
⊢
(t++(𝑅 ↾ 𝐴) Se 𝐴 ↔ ∀𝑡 ∈ 𝐴 {𝑢 ∈ 𝐴 ∣ 𝑢t++(𝑅 ↾ 𝐴)𝑡} ∈ V) |
| 171 | 169, 170 | sylnibr 329 |
. 2
⊢ (Fin = V
→ ¬ t++(𝑅 ↾
𝐴) Se 𝐴) |
| 172 | | vex 3440 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
| 173 | | vex 3440 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 174 | | eleq1w 2811 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 175 | | eqeq1 2733 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 = suc 𝑦 ↔ 𝑤 = suc 𝑦)) |
| 176 | 174, 175 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑦))) |
| 177 | | suceq 6375 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) |
| 178 | 177 | eqeq2d 2740 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑤 = suc 𝑦 ↔ 𝑤 = suc 𝑧)) |
| 179 | 178 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑦) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧))) |
| 180 | 172, 173,
176, 179, 119 | brab 5486 |
. . . . . . . . 9
⊢ (𝑤𝑅𝑧 ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧)) |
| 181 | 180 | biimpi 216 |
. . . . . . . 8
⊢ (𝑤𝑅𝑧 → (𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧)) |
| 182 | 181 | adantl 481 |
. . . . . . 7
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) → (𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧)) |
| 183 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧) → 𝑤 ∈ 𝐴) |
| 184 | 180 | biimpri 228 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧) → 𝑤𝑅𝑧) |
| 185 | 183, 184 | jca 511 |
. . . . . . 7
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧) → (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧)) |
| 186 | 182, 185 | impbii 209 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧)) |
| 187 | 186 | rabbia2 3397 |
. . . . 5
⊢ {𝑤 ∈ 𝐴 ∣ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ 𝑤 = suc 𝑧} |
| 188 | 173 | sucex 7742 |
. . . . . . . 8
⊢ suc 𝑧 ∈ V |
| 189 | 188 | eueqi 3669 |
. . . . . . 7
⊢
∃!𝑤 𝑤 = suc 𝑧 |
| 190 | | euabex 5404 |
. . . . . . 7
⊢
(∃!𝑤 𝑤 = suc 𝑧 → {𝑤 ∣ 𝑤 = suc 𝑧} ∈ V) |
| 191 | 189, 190 | ax-mp 5 |
. . . . . 6
⊢ {𝑤 ∣ 𝑤 = suc 𝑧} ∈ V |
| 192 | | rabssab 4036 |
. . . . . 6
⊢ {𝑤 ∈ 𝐴 ∣ 𝑤 = suc 𝑧} ⊆ {𝑤 ∣ 𝑤 = suc 𝑧} |
| 193 | 191, 192 | ssexi 5261 |
. . . . 5
⊢ {𝑤 ∈ 𝐴 ∣ 𝑤 = suc 𝑧} ∈ V |
| 194 | 187, 193 | eqeltri 2824 |
. . . 4
⊢ {𝑤 ∈ 𝐴 ∣ 𝑤𝑅𝑧} ∈ V |
| 195 | 194 | rgenw 3048 |
. . 3
⊢
∀𝑧 ∈
𝐴 {𝑤 ∈ 𝐴 ∣ 𝑤𝑅𝑧} ∈ V |
| 196 | | df-se 5573 |
. . 3
⊢ (𝑅 Se 𝐴 ↔ ∀𝑧 ∈ 𝐴 {𝑤 ∈ 𝐴 ∣ 𝑤𝑅𝑧} ∈ V) |
| 197 | 195, 196 | mpbir 231 |
. 2
⊢ 𝑅 Se 𝐴 |
| 198 | 171, 197 | jctil 519 |
1
⊢ (Fin = V
→ (𝑅 Se 𝐴 ∧ ¬ t++(𝑅 ↾ 𝐴) Se 𝐴)) |