Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvnttrclselem1 Structured version   Visualization version   GIF version

Theorem fineqvnttrclselem1 35074
Description: Lemma for fineqvnttrclse 35077. (Contributed by BTernaryTau, 12-Jan-2026.)
Assertion
Ref Expression
fineqvnttrclselem1 (𝐵 ∈ (ω ∖ 1o) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
Distinct variable groups:   𝐴,𝑑   𝐵,𝑑

Proof of Theorem fineqvnttrclselem1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4082 . . 3 (𝐵 ∈ (ω ∖ 1o) → 𝐵 ∈ ω)
2 eleq1 2816 . . . . . . . . . . . 12 ((𝐴 +o 𝑑) = 𝐵 → ((𝐴 +o 𝑑) ∈ ω ↔ 𝐵 ∈ ω))
32biimparc 479 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω)
43adantll 714 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω)
543adant2 1131 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω)
6 nnarcl 8534 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑑 ∈ On) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω)))
76adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω)))
873adant3 1132 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω)))
95, 8mpbid 232 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 ∈ ω ∧ 𝑑 ∈ ω))
109simprd 495 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → 𝑑 ∈ ω)
1110rabssdv 4026 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ⊆ ω)
12 nnon 7805 . . . . . . 7 (𝐵 ∈ ω → 𝐵 ∈ On)
13 oawordeu 8473 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
14 reusn 4679 . . . . . . . . 9 (∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 ↔ ∃𝑤{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤})
15 snfi 8968 . . . . . . . . . . 11 {𝑤} ∈ Fin
16 eleq1 2816 . . . . . . . . . . 11 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin ↔ {𝑤} ∈ Fin))
1715, 16mpbiri 258 . . . . . . . . . 10 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
1817exlimiv 1930 . . . . . . . . 9 (∃𝑤{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
1914, 18sylbi 217 . . . . . . . 8 (∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
2013, 19syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
2112, 20sylanl2 681 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
22 nnunifi 9180 . . . . . 6 (({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ⊆ ω ∧ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
2311, 21, 22syl2an2r 685 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
24 oawordex 8475 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵))
2512, 24sylan2 593 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵))
2625notbid 318 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (¬ 𝐴𝐵 ↔ ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵))
2726biimpa 476 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ ¬ 𝐴𝐵) → ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
28 ralnex 3055 . . . . . . 7 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 ↔ ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
29 rabeq0 4339 . . . . . . . . . . 11 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅ ↔ ∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵)
3029biimpri 228 . . . . . . . . . 10 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅)
3130unieqd 4871 . . . . . . . . 9 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅)
32 uni0 4886 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2780 . . . . . . . 8 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅)
34 peano1 7822 . . . . . . . 8 ∅ ∈ ω
3533, 34eqeltrdi 2836 . . . . . . 7 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3628, 35sylbir 235 . . . . . 6 (¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3727, 36syl 17 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ ¬ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3823, 37pm2.61dan 812 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3938expcom 413 . . 3 (𝐵 ∈ ω → (𝐴 ∈ On → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω))
401, 39syl 17 . 2 (𝐵 ∈ (ω ∖ 1o) → (𝐴 ∈ On → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω))
41 simpl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑑 ∈ On) → 𝐴 ∈ On)
42 df-oadd 8392 . . . . . . . 8 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
4342mpondm0 7589 . . . . . . 7 (¬ (𝐴 ∈ On ∧ 𝑑 ∈ On) → (𝐴 +o 𝑑) = ∅)
4441, 43nsyl5 159 . . . . . 6 𝐴 ∈ On → (𝐴 +o 𝑑) = ∅)
45 eldifsnneq 4742 . . . . . . 7 (𝐵 ∈ (ω ∖ {∅}) → ¬ 𝐵 = ∅)
46 df1o2 8395 . . . . . . . 8 1o = {∅}
4746difeq2i 4074 . . . . . . 7 (ω ∖ 1o) = (ω ∖ {∅})
4845, 47eleq2s 2846 . . . . . 6 (𝐵 ∈ (ω ∖ 1o) → ¬ 𝐵 = ∅)
49 eqtr2 2750 . . . . . . 7 (((𝐴 +o 𝑑) = 𝐵 ∧ (𝐴 +o 𝑑) = ∅) → 𝐵 = ∅)
5049stoic1b 1773 . . . . . 6 (((𝐴 +o 𝑑) = ∅ ∧ ¬ 𝐵 = ∅) → ¬ (𝐴 +o 𝑑) = 𝐵)
5144, 48, 50syl2anr 597 . . . . 5 ((𝐵 ∈ (ω ∖ 1o) ∧ ¬ 𝐴 ∈ On) → ¬ (𝐴 +o 𝑑) = 𝐵)
5251ralrimivw 3125 . . . 4 ((𝐵 ∈ (ω ∖ 1o) ∧ ¬ 𝐴 ∈ On) → ∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵)
5352, 35syl 17 . . 3 ((𝐵 ∈ (ω ∖ 1o) ∧ ¬ 𝐴 ∈ On) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
5453ex 412 . 2 (𝐵 ∈ (ω ∖ 1o) → (¬ 𝐴 ∈ On → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω))
5540, 54pm2.61d 179 1 (𝐵 ∈ (ω ∖ 1o) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  {csn 4577   cuni 4858  cmpt 5173  Oncon0 6307  suc csuc 6309  cfv 6482  (class class class)co 7349  ωcom 7799  reccrdg 8331  1oc1o 8381   +o coa 8385  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-en 8873  df-fin 8876
This theorem is referenced by:  fineqvnttrclselem2  35075  fineqvnttrclselem3  35076  fineqvnttrclse  35077
  Copyright terms: Public domain W3C validator