| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4082 |
. . 3
⊢ (𝐵 ∈ (ω ∖
1o) → 𝐵
∈ ω) |
| 2 | | eleq1 2816 |
. . . . . . . . . . . 12
⊢ ((𝐴 +o 𝑑) = 𝐵 → ((𝐴 +o 𝑑) ∈ ω ↔ 𝐵 ∈ ω)) |
| 3 | 2 | biimparc 479 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ω ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω) |
| 4 | 3 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω) |
| 5 | 4 | 3adant2 1131 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω) |
| 6 | | nnarcl 8534 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑑 ∈ On) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈
ω))) |
| 7 | 6 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈
ω))) |
| 8 | 7 | 3adant3 1132 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω))) |
| 9 | 5, 8 | mpbid 232 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 ∈ ω ∧ 𝑑 ∈ ω)) |
| 10 | 9 | simprd 495 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → 𝑑 ∈ ω) |
| 11 | 10 | rabssdv 4026 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ⊆ ω) |
| 12 | | nnon 7805 |
. . . . . . 7
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) |
| 13 | | oawordeu 8473 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵) |
| 14 | | reusn 4679 |
. . . . . . . . 9
⊢
(∃!𝑑 ∈ On
(𝐴 +o 𝑑) = 𝐵 ↔ ∃𝑤{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤}) |
| 15 | | snfi 8968 |
. . . . . . . . . . 11
⊢ {𝑤} ∈ Fin |
| 16 | | eleq1 2816 |
. . . . . . . . . . 11
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin ↔ {𝑤} ∈ Fin)) |
| 17 | 15, 16 | mpbiri 258 |
. . . . . . . . . 10
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) |
| 18 | 17 | exlimiv 1930 |
. . . . . . . . 9
⊢
(∃𝑤{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) |
| 19 | 14, 18 | sylbi 217 |
. . . . . . . 8
⊢
(∃!𝑑 ∈ On
(𝐴 +o 𝑑) = 𝐵 → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) |
| 20 | 13, 19 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) |
| 21 | 12, 20 | sylanl2 681 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ⊆ 𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) |
| 22 | | nnunifi 9180 |
. . . . . 6
⊢ (({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ⊆ ω ∧ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) → ∪ {𝑑
∈ On ∣ (𝐴
+o 𝑑) = 𝐵} ∈
ω) |
| 23 | 11, 21, 22 | syl2an2r 685 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ⊆ 𝐵) → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |
| 24 | | oawordex 8475 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)) |
| 25 | 12, 24 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)) |
| 26 | 25 | notbid 318 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (¬
𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)) |
| 27 | 26 | biimpa 476 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ ¬
𝐴 ⊆ 𝐵) → ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵) |
| 28 | | ralnex 3055 |
. . . . . . 7
⊢
(∀𝑑 ∈ On
¬ (𝐴 +o
𝑑) = 𝐵 ↔ ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵) |
| 29 | | rabeq0 4339 |
. . . . . . . . . . 11
⊢ ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅ ↔ ∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵) |
| 30 | 29 | biimpri 228 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈ On
¬ (𝐴 +o
𝑑) = 𝐵 → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅) |
| 31 | 30 | unieqd 4871 |
. . . . . . . . 9
⊢
(∀𝑑 ∈ On
¬ (𝐴 +o
𝑑) = 𝐵 → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∪
∅) |
| 32 | | uni0 4886 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
| 33 | 31, 32 | eqtrdi 2780 |
. . . . . . . 8
⊢
(∀𝑑 ∈ On
¬ (𝐴 +o
𝑑) = 𝐵 → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅) |
| 34 | | peano1 7822 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 35 | 33, 34 | eqeltrdi 2836 |
. . . . . . 7
⊢
(∀𝑑 ∈ On
¬ (𝐴 +o
𝑑) = 𝐵 → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |
| 36 | 28, 35 | sylbir 235 |
. . . . . 6
⊢ (¬
∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |
| 37 | 27, 36 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ ¬
𝐴 ⊆ 𝐵) → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |
| 38 | 23, 37 | pm2.61dan 812 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ∪ {𝑑
∈ On ∣ (𝐴
+o 𝑑) = 𝐵} ∈
ω) |
| 39 | 38 | expcom 413 |
. . 3
⊢ (𝐵 ∈ ω → (𝐴 ∈ On → ∪ {𝑑
∈ On ∣ (𝐴
+o 𝑑) = 𝐵} ∈
ω)) |
| 40 | 1, 39 | syl 17 |
. 2
⊢ (𝐵 ∈ (ω ∖
1o) → (𝐴
∈ On → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)) |
| 41 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑑 ∈ On) → 𝐴 ∈ On) |
| 42 | | df-oadd 8392 |
. . . . . . . 8
⊢
+o = (𝑥 ∈
On, 𝑦 ∈ On ↦
(rec((𝑧 ∈ V ↦
suc 𝑧), 𝑥)‘𝑦)) |
| 43 | 42 | mpondm0 7589 |
. . . . . . 7
⊢ (¬
(𝐴 ∈ On ∧ 𝑑 ∈ On) → (𝐴 +o 𝑑) = ∅) |
| 44 | 41, 43 | nsyl5 159 |
. . . . . 6
⊢ (¬
𝐴 ∈ On → (𝐴 +o 𝑑) = ∅) |
| 45 | | eldifsnneq 4742 |
. . . . . . 7
⊢ (𝐵 ∈ (ω ∖
{∅}) → ¬ 𝐵 =
∅) |
| 46 | | df1o2 8395 |
. . . . . . . 8
⊢
1o = {∅} |
| 47 | 46 | difeq2i 4074 |
. . . . . . 7
⊢ (ω
∖ 1o) = (ω ∖ {∅}) |
| 48 | 45, 47 | eleq2s 2846 |
. . . . . 6
⊢ (𝐵 ∈ (ω ∖
1o) → ¬ 𝐵 = ∅) |
| 49 | | eqtr2 2750 |
. . . . . . 7
⊢ (((𝐴 +o 𝑑) = 𝐵 ∧ (𝐴 +o 𝑑) = ∅) → 𝐵 = ∅) |
| 50 | 49 | stoic1b 1773 |
. . . . . 6
⊢ (((𝐴 +o 𝑑) = ∅ ∧ ¬ 𝐵 = ∅) → ¬ (𝐴 +o 𝑑) = 𝐵) |
| 51 | 44, 48, 50 | syl2anr 597 |
. . . . 5
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ ¬ 𝐴 ∈ On) → ¬ (𝐴 +o 𝑑) = 𝐵) |
| 52 | 51 | ralrimivw 3125 |
. . . 4
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ ¬ 𝐴 ∈ On) → ∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵) |
| 53 | 52, 35 | syl 17 |
. . 3
⊢ ((𝐵 ∈ (ω ∖
1o) ∧ ¬ 𝐴 ∈ On) → ∪ {𝑑
∈ On ∣ (𝐴
+o 𝑑) = 𝐵} ∈
ω) |
| 54 | 53 | ex 412 |
. 2
⊢ (𝐵 ∈ (ω ∖
1o) → (¬ 𝐴 ∈ On → ∪ {𝑑
∈ On ∣ (𝐴
+o 𝑑) = 𝐵} ∈
ω)) |
| 55 | 40, 54 | pm2.61d 179 |
1
⊢ (𝐵 ∈ (ω ∖
1o) → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) |