Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvnttrclselem1 Structured version   Visualization version   GIF version

Theorem fineqvnttrclselem1 35141
Description: Lemma for fineqvnttrclse 35144. (Contributed by BTernaryTau, 12-Jan-2026.)
Assertion
Ref Expression
fineqvnttrclselem1 (𝐵 ∈ (ω ∖ 1o) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
Distinct variable groups:   𝐴,𝑑   𝐵,𝑑

Proof of Theorem fineqvnttrclselem1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4078 . . 3 (𝐵 ∈ (ω ∖ 1o) → 𝐵 ∈ ω)
2 eleq1 2819 . . . . . . . . . . . 12 ((𝐴 +o 𝑑) = 𝐵 → ((𝐴 +o 𝑑) ∈ ω ↔ 𝐵 ∈ ω))
32biimparc 479 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω)
43adantll 714 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω)
543adant2 1131 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 +o 𝑑) ∈ ω)
6 nnarcl 8531 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑑 ∈ On) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω)))
76adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω)))
873adant3 1132 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → ((𝐴 +o 𝑑) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝑑 ∈ ω)))
95, 8mpbid 232 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → (𝐴 ∈ ω ∧ 𝑑 ∈ ω))
109simprd 495 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝑑 ∈ On ∧ (𝐴 +o 𝑑) = 𝐵) → 𝑑 ∈ ω)
1110rabssdv 4020 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ⊆ ω)
12 nnon 7802 . . . . . . 7 (𝐵 ∈ ω → 𝐵 ∈ On)
13 oawordeu 8470 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
14 reusn 4677 . . . . . . . . 9 (∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 ↔ ∃𝑤{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤})
15 snfi 8965 . . . . . . . . . . 11 {𝑤} ∈ Fin
16 eleq1 2819 . . . . . . . . . . 11 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin ↔ {𝑤} ∈ Fin))
1715, 16mpbiri 258 . . . . . . . . . 10 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
1817exlimiv 1931 . . . . . . . . 9 (∃𝑤{𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = {𝑤} → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
1914, 18sylbi 217 . . . . . . . 8 (∃!𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
2013, 19syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
2112, 20sylanl2 681 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin)
22 nnunifi 9175 . . . . . 6 (({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ⊆ ω ∧ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ Fin) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
2311, 21, 22syl2an2r 685 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
24 oawordex 8472 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵))
2512, 24sylan2 593 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵))
2625notbid 318 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (¬ 𝐴𝐵 ↔ ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵))
2726biimpa 476 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ ¬ 𝐴𝐵) → ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
28 ralnex 3058 . . . . . . 7 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 ↔ ¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵)
29 rabeq0 4335 . . . . . . . . . . 11 ({𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅ ↔ ∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵)
3029biimpri 228 . . . . . . . . . 10 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅)
3130unieqd 4869 . . . . . . . . 9 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅)
32 uni0 4884 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2782 . . . . . . . 8 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} = ∅)
34 peano1 7819 . . . . . . . 8 ∅ ∈ ω
3533, 34eqeltrdi 2839 . . . . . . 7 (∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3628, 35sylbir 235 . . . . . 6 (¬ ∃𝑑 ∈ On (𝐴 +o 𝑑) = 𝐵 {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3727, 36syl 17 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ ¬ 𝐴𝐵) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3823, 37pm2.61dan 812 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
3938expcom 413 . . 3 (𝐵 ∈ ω → (𝐴 ∈ On → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω))
401, 39syl 17 . 2 (𝐵 ∈ (ω ∖ 1o) → (𝐴 ∈ On → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω))
41 simpl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑑 ∈ On) → 𝐴 ∈ On)
42 df-oadd 8389 . . . . . . . 8 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
4342mpondm0 7586 . . . . . . 7 (¬ (𝐴 ∈ On ∧ 𝑑 ∈ On) → (𝐴 +o 𝑑) = ∅)
4441, 43nsyl5 159 . . . . . 6 𝐴 ∈ On → (𝐴 +o 𝑑) = ∅)
45 eldifsnneq 4740 . . . . . . 7 (𝐵 ∈ (ω ∖ {∅}) → ¬ 𝐵 = ∅)
46 df1o2 8392 . . . . . . . 8 1o = {∅}
4746difeq2i 4070 . . . . . . 7 (ω ∖ 1o) = (ω ∖ {∅})
4845, 47eleq2s 2849 . . . . . 6 (𝐵 ∈ (ω ∖ 1o) → ¬ 𝐵 = ∅)
49 eqtr2 2752 . . . . . . 7 (((𝐴 +o 𝑑) = 𝐵 ∧ (𝐴 +o 𝑑) = ∅) → 𝐵 = ∅)
5049stoic1b 1774 . . . . . 6 (((𝐴 +o 𝑑) = ∅ ∧ ¬ 𝐵 = ∅) → ¬ (𝐴 +o 𝑑) = 𝐵)
5144, 48, 50syl2anr 597 . . . . 5 ((𝐵 ∈ (ω ∖ 1o) ∧ ¬ 𝐴 ∈ On) → ¬ (𝐴 +o 𝑑) = 𝐵)
5251ralrimivw 3128 . . . 4 ((𝐵 ∈ (ω ∖ 1o) ∧ ¬ 𝐴 ∈ On) → ∀𝑑 ∈ On ¬ (𝐴 +o 𝑑) = 𝐵)
5352, 35syl 17 . . 3 ((𝐵 ∈ (ω ∖ 1o) ∧ ¬ 𝐴 ∈ On) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
5453ex 412 . 2 (𝐵 ∈ (ω ∖ 1o) → (¬ 𝐴 ∈ On → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω))
5540, 54pm2.61d 179 1 (𝐵 ∈ (ω ∖ 1o) → {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  c0 4280  {csn 4573   cuni 4856  cmpt 5170  Oncon0 6306  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  1oc1o 8378   +o coa 8382  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-en 8870  df-fin 8873
This theorem is referenced by:  fineqvnttrclselem2  35142  fineqvnttrclselem3  35143  fineqvnttrclse  35144
  Copyright terms: Public domain W3C validator