| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcfaclem | Structured version Visualization version GIF version | ||
| Description: Lemma for pcfac 16846. (Contributed by Mario Carneiro, 20-May-2014.) |
| Ref | Expression |
|---|---|
| pcfaclem | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 12443 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁) |
| 3 | nn0re 12427 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 4 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
| 5 | prmnn 16620 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 6 | 5 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 7 | eluznn0 12852 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | |
| 8 | 7 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0) |
| 9 | 6, 8 | nnexpcld 14186 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℕ) |
| 10 | 9 | nnred 12177 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℝ) |
| 11 | 9 | nngt0d 12211 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃↑𝑀)) |
| 12 | ge0div 12026 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) | |
| 13 | 4, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) |
| 14 | 2, 13 | mpbid 232 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃↑𝑀))) |
| 15 | 8 | nn0red 12480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ) |
| 16 | eluzle 12782 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | |
| 17 | 16 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ≤ 𝑀) |
| 18 | prmuz2 16642 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
| 19 | 18 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) |
| 20 | bernneq3 14172 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃↑𝑀)) | |
| 21 | 19, 8, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃↑𝑀)) |
| 22 | 4, 15, 10, 17, 21 | lelttrd 11308 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃↑𝑀)) |
| 23 | 9 | nncnd 12178 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℂ) |
| 24 | 23 | mulridd 11167 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃↑𝑀) · 1) = (𝑃↑𝑀)) |
| 25 | 22, 24 | breqtrrd 5130 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃↑𝑀) · 1)) |
| 26 | 1red 11151 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ) | |
| 27 | ltdivmul 12034 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀))) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) | |
| 28 | 4, 26, 10, 11, 27 | syl112anc 1376 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) |
| 29 | 25, 28 | mpbird 257 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < 1) |
| 30 | 0p1e1 12279 | . . 3 ⊢ (0 + 1) = 1 | |
| 31 | 29, 30 | breqtrrdi 5144 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < (0 + 1)) |
| 32 | 4, 9 | nndivred 12216 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) ∈ ℝ) |
| 33 | 0z 12516 | . . 3 ⊢ 0 ∈ ℤ | |
| 34 | flbi 13754 | . . 3 ⊢ (((𝑁 / (𝑃↑𝑀)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) | |
| 35 | 32, 33, 34 | sylancl 586 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) |
| 36 | 14, 31, 35 | mpbir2and 713 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 / cdiv 11811 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ℤcz 12505 ℤ≥cuz 12769 ⌊cfl 13728 ↑cexp 14002 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 |
| This theorem is referenced by: pcfac 16846 |
| Copyright terms: Public domain | W3C validator |