MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcfaclem Structured version   Visualization version   GIF version

Theorem pcfaclem 16088
Description: Lemma for pcfac 16089. (Contributed by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
pcfaclem ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)

Proof of Theorem pcfaclem
StepHypRef Expression
1 nn0ge0 11732 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
213ad2ant1 1114 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁)
3 nn0re 11715 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1114 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
5 prmnn 15872 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant3 1116 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
7 eluznn0 12129 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
873adant3 1113 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0)
96, 8nnexpcld 13419 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℕ)
109nnred 11454 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℝ)
119nngt0d 11487 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃𝑀))
12 ge0div 11306 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
134, 10, 11, 12syl3anc 1352 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
142, 13mpbid 224 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃𝑀)))
158nn0red 11766 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ)
16 eluzle 12069 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
17163ad2ant2 1115 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁𝑀)
18 prmuz2 15894 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant3 1116 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
20 bernneq3 13405 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃𝑀))
2119, 8, 20syl2anc 576 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃𝑀))
224, 15, 10, 17, 21lelttrd 10596 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃𝑀))
239nncnd 11455 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℂ)
2423mulid1d 10455 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃𝑀) · 1) = (𝑃𝑀))
2522, 24breqtrrd 4953 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃𝑀) · 1))
26 1red 10438 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
27 ltdivmul 11314 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀))) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
284, 26, 10, 11, 27syl112anc 1355 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
2925, 28mpbird 249 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < 1)
30 0p1e1 11567 . . 3 (0 + 1) = 1
3129, 30syl6breqr 4967 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < (0 + 1))
324, 9nndivred 11492 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) ∈ ℝ)
33 0z 11802 . . 3 0 ∈ ℤ
34 flbi 12999 . . 3 (((𝑁 / (𝑃𝑀)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3532, 33, 34sylancl 578 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3614, 31, 35mpbir2and 701 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051   class class class wbr 4925  cfv 6185  (class class class)co 6974  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338   < clt 10472  cle 10473   / cdiv 11096  cn 11437  2c2 11493  0cn0 11705  cz 11791  cuz 12056  cfl 12973  cexp 13242  cprime 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-inf 8700  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-fl 12975  df-seq 13183  df-exp 13243  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-dvds 15466  df-prm 15870
This theorem is referenced by:  pcfac  16089
  Copyright terms: Public domain W3C validator