Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcfaclem | Structured version Visualization version GIF version |
Description: Lemma for pcfac 16697. (Contributed by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
pcfaclem | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge0 12359 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
2 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁) |
3 | nn0re 12343 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
4 | 3 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
5 | prmnn 16476 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
7 | eluznn0 12758 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | |
8 | 7 | 3adant3 1131 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0) |
9 | 6, 8 | nnexpcld 14061 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℕ) |
10 | 9 | nnred 12089 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℝ) |
11 | 9 | nngt0d 12123 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃↑𝑀)) |
12 | ge0div 11943 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) | |
13 | 4, 10, 11, 12 | syl3anc 1370 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) |
14 | 2, 13 | mpbid 231 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃↑𝑀))) |
15 | 8 | nn0red 12395 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ) |
16 | eluzle 12696 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | |
17 | 16 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ≤ 𝑀) |
18 | prmuz2 16498 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
19 | 18 | 3ad2ant3 1134 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) |
20 | bernneq3 14047 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃↑𝑀)) | |
21 | 19, 8, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃↑𝑀)) |
22 | 4, 15, 10, 17, 21 | lelttrd 11234 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃↑𝑀)) |
23 | 9 | nncnd 12090 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℂ) |
24 | 23 | mulid1d 11093 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃↑𝑀) · 1) = (𝑃↑𝑀)) |
25 | 22, 24 | breqtrrd 5120 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃↑𝑀) · 1)) |
26 | 1red 11077 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ) | |
27 | ltdivmul 11951 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀))) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) | |
28 | 4, 26, 10, 11, 27 | syl112anc 1373 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) |
29 | 25, 28 | mpbird 256 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < 1) |
30 | 0p1e1 12196 | . . 3 ⊢ (0 + 1) = 1 | |
31 | 29, 30 | breqtrrdi 5134 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < (0 + 1)) |
32 | 4, 9 | nndivred 12128 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) ∈ ℝ) |
33 | 0z 12431 | . . 3 ⊢ 0 ∈ ℤ | |
34 | flbi 13637 | . . 3 ⊢ (((𝑁 / (𝑃↑𝑀)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) | |
35 | 32, 33, 34 | sylancl 586 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) |
36 | 14, 31, 35 | mpbir2and 710 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 ℝcr 10971 0cc0 10972 1c1 10973 + caddc 10975 · cmul 10977 < clt 11110 ≤ cle 11111 / cdiv 11733 ℕcn 12074 2c2 12129 ℕ0cn0 12334 ℤcz 12420 ℤ≥cuz 12683 ⌊cfl 13611 ↑cexp 13883 ℙcprime 16473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fl 13613 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 df-prm 16474 |
This theorem is referenced by: pcfac 16697 |
Copyright terms: Public domain | W3C validator |