MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcfaclem Structured version   Visualization version   GIF version

Theorem pcfaclem 16923
Description: Lemma for pcfac 16924. (Contributed by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
pcfaclem ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)

Proof of Theorem pcfaclem
StepHypRef Expression
1 nn0ge0 12531 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
213ad2ant1 1133 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁)
3 nn0re 12515 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1133 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
5 prmnn 16698 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant3 1135 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
7 eluznn0 12938 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
873adant3 1132 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0)
96, 8nnexpcld 14268 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℕ)
109nnred 12260 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℝ)
119nngt0d 12294 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃𝑀))
12 ge0div 12114 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
134, 10, 11, 12syl3anc 1373 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
142, 13mpbid 232 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃𝑀)))
158nn0red 12568 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ)
16 eluzle 12870 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
17163ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁𝑀)
18 prmuz2 16720 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
20 bernneq3 14254 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃𝑀))
2119, 8, 20syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃𝑀))
224, 15, 10, 17, 21lelttrd 11398 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃𝑀))
239nncnd 12261 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℂ)
2423mulridd 11257 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃𝑀) · 1) = (𝑃𝑀))
2522, 24breqtrrd 5152 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃𝑀) · 1))
26 1red 11241 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
27 ltdivmul 12122 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀))) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
284, 26, 10, 11, 27syl112anc 1376 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
2925, 28mpbird 257 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < 1)
30 0p1e1 12367 . . 3 (0 + 1) = 1
3129, 30breqtrrdi 5166 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < (0 + 1))
324, 9nndivred 12299 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) ∈ ℝ)
33 0z 12604 . . 3 0 ∈ ℤ
34 flbi 13838 . . 3 (((𝑁 / (𝑃𝑀)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3532, 33, 34sylancl 586 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3614, 31, 35mpbir2and 713 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  cuz 12857  cfl 13812  cexp 14084  cprime 16695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-prm 16696
This theorem is referenced by:  pcfac  16924
  Copyright terms: Public domain W3C validator