| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvge0 | Structured version Visualization version GIF version | ||
| Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.) |
| Ref | Expression |
|---|---|
| dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvge0.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞)) |
| dvge0.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
| dvge0.y | ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) |
| dvge0.l | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| Ref | Expression |
|---|---|
| dvge0 | ⊢ (𝜑 → (𝐹‘𝑋) ≤ (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvge0.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) | |
| 2 | dvge0.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) | |
| 3 | dvgt0.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | dvgt0.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | dvgt0.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 6 | dvge0.d | . . . . . . . . . 10 ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞)) | |
| 7 | 3, 4, 5, 6 | dvgt0lem1 25932 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞)) |
| 8 | 7 | exp31 419 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋 < 𝑌 → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞)))) |
| 9 | 1, 2, 8 | mp2and 699 | . . . . . . 7 ⊢ (𝜑 → (𝑋 < 𝑌 → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞))) |
| 10 | 9 | imp 406 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞)) |
| 11 | elrege0 13351 | . . . . . . 7 ⊢ ((((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞) ↔ ((((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ ℝ ∧ 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)))) | |
| 12 | 11 | simprbi 496 | . . . . . 6 ⊢ ((((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞) → 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋))) |
| 13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋))) |
| 14 | cncff 24811 | . . . . . . . . . 10 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 15 | 5, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 16 | 15, 2 | ffvelcdmd 7018 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘𝑌) ∈ ℝ) |
| 17 | 15, 1 | ffvelcdmd 7018 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
| 18 | 16, 17 | resubcld 11542 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘𝑌) − (𝐹‘𝑋)) ∈ ℝ) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝐹‘𝑌) − (𝐹‘𝑋)) ∈ ℝ) |
| 20 | iccssre 13326 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 21 | 3, 4, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 22 | 21, 2 | sseldd 3935 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 23 | 21, 1 | sseldd 3935 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 24 | 22, 23 | resubcld 11542 | . . . . . . 7 ⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℝ) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑌 − 𝑋) ∈ ℝ) |
| 26 | 23, 22 | posdifd 11701 | . . . . . . 7 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌 − 𝑋))) |
| 27 | 26 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 < (𝑌 − 𝑋)) |
| 28 | ge0div 11986 | . . . . . 6 ⊢ ((((𝐹‘𝑌) − (𝐹‘𝑋)) ∈ ℝ ∧ (𝑌 − 𝑋) ∈ ℝ ∧ 0 < (𝑌 − 𝑋)) → (0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)) ↔ 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)))) | |
| 29 | 19, 25, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)) ↔ 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)))) |
| 30 | 13, 29 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋))) |
| 31 | 30 | ex 412 | . . 3 ⊢ (𝜑 → (𝑋 < 𝑌 → 0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)))) |
| 32 | 16, 17 | subge0d 11704 | . . 3 ⊢ (𝜑 → (0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 33 | 31, 32 | sylibd 239 | . 2 ⊢ (𝜑 → (𝑋 < 𝑌 → (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 34 | 16 | leidd 11680 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ≤ (𝐹‘𝑌)) |
| 35 | fveq2 6822 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝐹‘𝑋) = (𝐹‘𝑌)) | |
| 36 | 35 | breq1d 5101 | . . 3 ⊢ (𝑋 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ (𝐹‘𝑌) ≤ (𝐹‘𝑌))) |
| 37 | 34, 36 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 → (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 38 | dvge0.l | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 39 | 23, 22 | leloed 11253 | . . 3 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
| 40 | 38, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌)) |
| 41 | 33, 37, 40 | mpjaod 860 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≤ (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 +∞cpnf 11140 < clt 11143 ≤ cle 11144 − cmin 11341 / cdiv 11771 (,)cioo 13242 [,)cico 13244 [,]cicc 13245 –cn→ccncf 24794 D cdv 25789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 |
| This theorem is referenced by: dvle 25937 |
| Copyright terms: Public domain | W3C validator |