![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvge0 | Structured version Visualization version GIF version |
Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.) |
Ref | Expression |
---|---|
dvgt0.a | β’ (π β π΄ β β) |
dvgt0.b | β’ (π β π΅ β β) |
dvgt0.f | β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) |
dvge0.d | β’ (π β (β D πΉ):(π΄(,)π΅)βΆ(0[,)+β)) |
dvge0.x | β’ (π β π β (π΄[,]π΅)) |
dvge0.y | β’ (π β π β (π΄[,]π΅)) |
dvge0.l | β’ (π β π β€ π) |
Ref | Expression |
---|---|
dvge0 | β’ (π β (πΉβπ) β€ (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvge0.x | . . . . . . . 8 β’ (π β π β (π΄[,]π΅)) | |
2 | dvge0.y | . . . . . . . 8 β’ (π β π β (π΄[,]π΅)) | |
3 | dvgt0.a | . . . . . . . . . 10 β’ (π β π΄ β β) | |
4 | dvgt0.b | . . . . . . . . . 10 β’ (π β π΅ β β) | |
5 | dvgt0.f | . . . . . . . . . 10 β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) | |
6 | dvge0.d | . . . . . . . . . 10 β’ (π β (β D πΉ):(π΄(,)π΅)βΆ(0[,)+β)) | |
7 | 3, 4, 5, 6 | dvgt0lem1 25948 | . . . . . . . . 9 β’ (((π β§ (π β (π΄[,]π΅) β§ π β (π΄[,]π΅))) β§ π < π) β (((πΉβπ) β (πΉβπ)) / (π β π)) β (0[,)+β)) |
8 | 7 | exp31 419 | . . . . . . . 8 β’ (π β ((π β (π΄[,]π΅) β§ π β (π΄[,]π΅)) β (π < π β (((πΉβπ) β (πΉβπ)) / (π β π)) β (0[,)+β)))) |
9 | 1, 2, 8 | mp2and 698 | . . . . . . 7 β’ (π β (π < π β (((πΉβπ) β (πΉβπ)) / (π β π)) β (0[,)+β))) |
10 | 9 | imp 406 | . . . . . 6 β’ ((π β§ π < π) β (((πΉβπ) β (πΉβπ)) / (π β π)) β (0[,)+β)) |
11 | elrege0 13464 | . . . . . . 7 β’ ((((πΉβπ) β (πΉβπ)) / (π β π)) β (0[,)+β) β ((((πΉβπ) β (πΉβπ)) / (π β π)) β β β§ 0 β€ (((πΉβπ) β (πΉβπ)) / (π β π)))) | |
12 | 11 | simprbi 496 | . . . . . 6 β’ ((((πΉβπ) β (πΉβπ)) / (π β π)) β (0[,)+β) β 0 β€ (((πΉβπ) β (πΉβπ)) / (π β π))) |
13 | 10, 12 | syl 17 | . . . . 5 β’ ((π β§ π < π) β 0 β€ (((πΉβπ) β (πΉβπ)) / (π β π))) |
14 | cncff 24826 | . . . . . . . . . 10 β’ (πΉ β ((π΄[,]π΅)βcnββ) β πΉ:(π΄[,]π΅)βΆβ) | |
15 | 5, 14 | syl 17 | . . . . . . . . 9 β’ (π β πΉ:(π΄[,]π΅)βΆβ) |
16 | 15, 2 | ffvelcdmd 7095 | . . . . . . . 8 β’ (π β (πΉβπ) β β) |
17 | 15, 1 | ffvelcdmd 7095 | . . . . . . . 8 β’ (π β (πΉβπ) β β) |
18 | 16, 17 | resubcld 11673 | . . . . . . 7 β’ (π β ((πΉβπ) β (πΉβπ)) β β) |
19 | 18 | adantr 480 | . . . . . 6 β’ ((π β§ π < π) β ((πΉβπ) β (πΉβπ)) β β) |
20 | iccssre 13439 | . . . . . . . . . 10 β’ ((π΄ β β β§ π΅ β β) β (π΄[,]π΅) β β) | |
21 | 3, 4, 20 | syl2anc 583 | . . . . . . . . 9 β’ (π β (π΄[,]π΅) β β) |
22 | 21, 2 | sseldd 3981 | . . . . . . . 8 β’ (π β π β β) |
23 | 21, 1 | sseldd 3981 | . . . . . . . 8 β’ (π β π β β) |
24 | 22, 23 | resubcld 11673 | . . . . . . 7 β’ (π β (π β π) β β) |
25 | 24 | adantr 480 | . . . . . 6 β’ ((π β§ π < π) β (π β π) β β) |
26 | 23, 22 | posdifd 11832 | . . . . . . 7 β’ (π β (π < π β 0 < (π β π))) |
27 | 26 | biimpa 476 | . . . . . 6 β’ ((π β§ π < π) β 0 < (π β π)) |
28 | ge0div 12112 | . . . . . 6 β’ ((((πΉβπ) β (πΉβπ)) β β β§ (π β π) β β β§ 0 < (π β π)) β (0 β€ ((πΉβπ) β (πΉβπ)) β 0 β€ (((πΉβπ) β (πΉβπ)) / (π β π)))) | |
29 | 19, 25, 27, 28 | syl3anc 1369 | . . . . 5 β’ ((π β§ π < π) β (0 β€ ((πΉβπ) β (πΉβπ)) β 0 β€ (((πΉβπ) β (πΉβπ)) / (π β π)))) |
30 | 13, 29 | mpbird 257 | . . . 4 β’ ((π β§ π < π) β 0 β€ ((πΉβπ) β (πΉβπ))) |
31 | 30 | ex 412 | . . 3 β’ (π β (π < π β 0 β€ ((πΉβπ) β (πΉβπ)))) |
32 | 16, 17 | subge0d 11835 | . . 3 β’ (π β (0 β€ ((πΉβπ) β (πΉβπ)) β (πΉβπ) β€ (πΉβπ))) |
33 | 31, 32 | sylibd 238 | . 2 β’ (π β (π < π β (πΉβπ) β€ (πΉβπ))) |
34 | 16 | leidd 11811 | . . 3 β’ (π β (πΉβπ) β€ (πΉβπ)) |
35 | fveq2 6897 | . . . 4 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
36 | 35 | breq1d 5158 | . . 3 β’ (π = π β ((πΉβπ) β€ (πΉβπ) β (πΉβπ) β€ (πΉβπ))) |
37 | 34, 36 | syl5ibrcom 246 | . 2 β’ (π β (π = π β (πΉβπ) β€ (πΉβπ))) |
38 | dvge0.l | . . 3 β’ (π β π β€ π) | |
39 | 23, 22 | leloed 11388 | . . 3 β’ (π β (π β€ π β (π < π β¨ π = π))) |
40 | 38, 39 | mpbid 231 | . 2 β’ (π β (π < π β¨ π = π)) |
41 | 33, 37, 40 | mpjaod 859 | 1 β’ (π β (πΉβπ) β€ (πΉβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β¨ wo 846 = wceq 1534 β wcel 2099 β wss 3947 class class class wbr 5148 βΆwf 6544 βcfv 6548 (class class class)co 7420 βcr 11138 0cc0 11139 +βcpnf 11276 < clt 11279 β€ cle 11280 β cmin 11475 / cdiv 11902 (,)cioo 13357 [,)cico 13359 [,]cicc 13360 βcnβccncf 24809 D cdv 25805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-cmp 23304 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-limc 25808 df-dv 25809 |
This theorem is referenced by: dvle 25953 |
Copyright terms: Public domain | W3C validator |