MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvge0 Structured version   Visualization version   GIF version

Theorem dvge0 25075
Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvge0.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞))
dvge0.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
dvge0.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
dvge0.l (𝜑𝑋𝑌)
Assertion
Ref Expression
dvge0 (𝜑 → (𝐹𝑋) ≤ (𝐹𝑌))

Proof of Theorem dvge0
StepHypRef Expression
1 dvge0.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
2 dvge0.y . . . . . . . 8 (𝜑𝑌 ∈ (𝐴[,]𝐵))
3 dvgt0.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 dvgt0.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 dvgt0.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
6 dvge0.d . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞))
73, 4, 5, 6dvgt0lem1 25071 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))
87exp31 419 . . . . . . . 8 (𝜑 → ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋 < 𝑌 → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))))
91, 2, 8mp2and 695 . . . . . . 7 (𝜑 → (𝑋 < 𝑌 → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞)))
109imp 406 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))
11 elrege0 13115 . . . . . . 7 ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞) ↔ ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ ℝ ∧ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
1211simprbi 496 . . . . . 6 ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞) → 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
1310, 12syl 17 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
14 cncff 23962 . . . . . . . . . 10 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
155, 14syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
1615, 2ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝐹𝑌) ∈ ℝ)
1715, 1ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ℝ)
1816, 17resubcld 11333 . . . . . . 7 (𝜑 → ((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ)
20 iccssre 13090 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
213, 4, 20syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2221, 2sseldd 3918 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
2321, 1sseldd 3918 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
2422, 23resubcld 11333 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℝ)
2524adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
2623, 22posdifd 11492 . . . . . . 7 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
2726biimpa 476 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
28 ge0div 11772 . . . . . 6 ((((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋)) → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
2919, 25, 27, 28syl3anc 1369 . . . . 5 ((𝜑𝑋 < 𝑌) → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
3013, 29mpbird 256 . . . 4 ((𝜑𝑋 < 𝑌) → 0 ≤ ((𝐹𝑌) − (𝐹𝑋)))
3130ex 412 . . 3 (𝜑 → (𝑋 < 𝑌 → 0 ≤ ((𝐹𝑌) − (𝐹𝑋))))
3216, 17subge0d 11495 . . 3 (𝜑 → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ (𝐹𝑋) ≤ (𝐹𝑌)))
3331, 32sylibd 238 . 2 (𝜑 → (𝑋 < 𝑌 → (𝐹𝑋) ≤ (𝐹𝑌)))
3416leidd 11471 . . 3 (𝜑 → (𝐹𝑌) ≤ (𝐹𝑌))
35 fveq2 6756 . . . 4 (𝑋 = 𝑌 → (𝐹𝑋) = (𝐹𝑌))
3635breq1d 5080 . . 3 (𝑋 = 𝑌 → ((𝐹𝑋) ≤ (𝐹𝑌) ↔ (𝐹𝑌) ≤ (𝐹𝑌)))
3734, 36syl5ibrcom 246 . 2 (𝜑 → (𝑋 = 𝑌 → (𝐹𝑋) ≤ (𝐹𝑌)))
38 dvge0.l . . 3 (𝜑𝑋𝑌)
3923, 22leloed 11048 . . 3 (𝜑 → (𝑋𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
4038, 39mpbid 231 . 2 (𝜑 → (𝑋 < 𝑌𝑋 = 𝑌))
4133, 37, 40mpjaod 856 1 (𝜑 → (𝐹𝑋) ≤ (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvle  25076
  Copyright terms: Public domain W3C validator