MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvge0 Structured version   Visualization version   GIF version

Theorem dvge0 26060
Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvge0.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞))
dvge0.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
dvge0.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
dvge0.l (𝜑𝑋𝑌)
Assertion
Ref Expression
dvge0 (𝜑 → (𝐹𝑋) ≤ (𝐹𝑌))

Proof of Theorem dvge0
StepHypRef Expression
1 dvge0.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
2 dvge0.y . . . . . . . 8 (𝜑𝑌 ∈ (𝐴[,]𝐵))
3 dvgt0.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 dvgt0.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 dvgt0.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
6 dvge0.d . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞))
73, 4, 5, 6dvgt0lem1 26056 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))
87exp31 419 . . . . . . . 8 (𝜑 → ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋 < 𝑌 → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))))
91, 2, 8mp2and 699 . . . . . . 7 (𝜑 → (𝑋 < 𝑌 → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞)))
109imp 406 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))
11 elrege0 13491 . . . . . . 7 ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞) ↔ ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ ℝ ∧ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
1211simprbi 496 . . . . . 6 ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞) → 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
1310, 12syl 17 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
14 cncff 24933 . . . . . . . . . 10 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
155, 14syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
1615, 2ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝐹𝑌) ∈ ℝ)
1715, 1ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ℝ)
1816, 17resubcld 11689 . . . . . . 7 (𝜑 → ((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ)
20 iccssre 13466 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
213, 4, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2221, 2sseldd 3996 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
2321, 1sseldd 3996 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
2422, 23resubcld 11689 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℝ)
2524adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
2623, 22posdifd 11848 . . . . . . 7 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
2726biimpa 476 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
28 ge0div 12133 . . . . . 6 ((((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋)) → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
2919, 25, 27, 28syl3anc 1370 . . . . 5 ((𝜑𝑋 < 𝑌) → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
3013, 29mpbird 257 . . . 4 ((𝜑𝑋 < 𝑌) → 0 ≤ ((𝐹𝑌) − (𝐹𝑋)))
3130ex 412 . . 3 (𝜑 → (𝑋 < 𝑌 → 0 ≤ ((𝐹𝑌) − (𝐹𝑋))))
3216, 17subge0d 11851 . . 3 (𝜑 → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ (𝐹𝑋) ≤ (𝐹𝑌)))
3331, 32sylibd 239 . 2 (𝜑 → (𝑋 < 𝑌 → (𝐹𝑋) ≤ (𝐹𝑌)))
3416leidd 11827 . . 3 (𝜑 → (𝐹𝑌) ≤ (𝐹𝑌))
35 fveq2 6907 . . . 4 (𝑋 = 𝑌 → (𝐹𝑋) = (𝐹𝑌))
3635breq1d 5158 . . 3 (𝑋 = 𝑌 → ((𝐹𝑋) ≤ (𝐹𝑌) ↔ (𝐹𝑌) ≤ (𝐹𝑌)))
3734, 36syl5ibrcom 247 . 2 (𝜑 → (𝑋 = 𝑌 → (𝐹𝑋) ≤ (𝐹𝑌)))
38 dvge0.l . . 3 (𝜑𝑋𝑌)
3923, 22leloed 11402 . . 3 (𝜑 → (𝑋𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
4038, 39mpbid 232 . 2 (𝜑 → (𝑋 < 𝑌𝑋 = 𝑌))
4133, 37, 40mpjaod 860 1 (𝜑 → (𝐹𝑋) ≤ (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  +∞cpnf 11290   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  (,)cioo 13384  [,)cico 13386  [,]cicc 13387  cnccncf 24916   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dvle  26061
  Copyright terms: Public domain W3C validator