| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvge0 | Structured version Visualization version GIF version | ||
| Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.) |
| Ref | Expression |
|---|---|
| dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvge0.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞)) |
| dvge0.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
| dvge0.y | ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) |
| dvge0.l | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| Ref | Expression |
|---|---|
| dvge0 | ⊢ (𝜑 → (𝐹‘𝑋) ≤ (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvge0.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) | |
| 2 | dvge0.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) | |
| 3 | dvgt0.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | dvgt0.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | dvgt0.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 6 | dvge0.d | . . . . . . . . . 10 ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞)) | |
| 7 | 3, 4, 5, 6 | dvgt0lem1 25923 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞)) |
| 8 | 7 | exp31 419 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋 < 𝑌 → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞)))) |
| 9 | 1, 2, 8 | mp2and 699 | . . . . . . 7 ⊢ (𝜑 → (𝑋 < 𝑌 → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞))) |
| 10 | 9 | imp 406 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞)) |
| 11 | elrege0 13375 | . . . . . . 7 ⊢ ((((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞) ↔ ((((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ ℝ ∧ 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)))) | |
| 12 | 11 | simprbi 496 | . . . . . 6 ⊢ ((((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ (0[,)+∞) → 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋))) |
| 13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋))) |
| 14 | cncff 24802 | . . . . . . . . . 10 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 15 | 5, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 16 | 15, 2 | ffvelcdmd 7023 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘𝑌) ∈ ℝ) |
| 17 | 15, 1 | ffvelcdmd 7023 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
| 18 | 16, 17 | resubcld 11566 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘𝑌) − (𝐹‘𝑋)) ∈ ℝ) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝐹‘𝑌) − (𝐹‘𝑋)) ∈ ℝ) |
| 20 | iccssre 13350 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 21 | 3, 4, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 22 | 21, 2 | sseldd 3938 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 23 | 21, 1 | sseldd 3938 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 24 | 22, 23 | resubcld 11566 | . . . . . . 7 ⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℝ) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑌 − 𝑋) ∈ ℝ) |
| 26 | 23, 22 | posdifd 11725 | . . . . . . 7 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌 − 𝑋))) |
| 27 | 26 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 < (𝑌 − 𝑋)) |
| 28 | ge0div 12010 | . . . . . 6 ⊢ ((((𝐹‘𝑌) − (𝐹‘𝑋)) ∈ ℝ ∧ (𝑌 − 𝑋) ∈ ℝ ∧ 0 < (𝑌 − 𝑋)) → (0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)) ↔ 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)))) | |
| 29 | 19, 25, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)) ↔ 0 ≤ (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)))) |
| 30 | 13, 29 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋))) |
| 31 | 30 | ex 412 | . . 3 ⊢ (𝜑 → (𝑋 < 𝑌 → 0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)))) |
| 32 | 16, 17 | subge0d 11728 | . . 3 ⊢ (𝜑 → (0 ≤ ((𝐹‘𝑌) − (𝐹‘𝑋)) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 33 | 31, 32 | sylibd 239 | . 2 ⊢ (𝜑 → (𝑋 < 𝑌 → (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 34 | 16 | leidd 11704 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ≤ (𝐹‘𝑌)) |
| 35 | fveq2 6826 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝐹‘𝑋) = (𝐹‘𝑌)) | |
| 36 | 35 | breq1d 5105 | . . 3 ⊢ (𝑋 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ (𝐹‘𝑌) ≤ (𝐹‘𝑌))) |
| 37 | 34, 36 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 → (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 38 | dvge0.l | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 39 | 23, 22 | leloed 11277 | . . 3 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
| 40 | 38, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌)) |
| 41 | 33, 37, 40 | mpjaod 860 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≤ (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 +∞cpnf 11165 < clt 11168 ≤ cle 11169 − cmin 11365 / cdiv 11795 (,)cioo 13266 [,)cico 13268 [,]cicc 13269 –cn→ccncf 24785 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: dvle 25928 |
| Copyright terms: Public domain | W3C validator |