| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0oALTV | Structured version Visualization version GIF version | ||
| Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| nn0oALTV | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddm1div2z 47615 | . . 3 ⊢ (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℤ) |
| 3 | elnn0 12508 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 4 | nnm1ge0 12666 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) | |
| 5 | nnre 12252 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 6 | peano2rem 11555 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ) |
| 8 | 2re 12319 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
| 10 | 2pos 12348 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < 2) |
| 12 | ge0div 12114 | . . . . . . . 8 ⊢ (((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 2))) | |
| 13 | 7, 9, 11, 12 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 2))) |
| 14 | 4, 13 | mpbid 232 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 0 ≤ ((𝑁 − 1) / 2)) |
| 15 | 14 | a1d 25 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))) |
| 16 | eleq1 2823 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd )) | |
| 17 | 0noddALTV 47670 | . . . . . . 7 ⊢ 0 ∉ Odd | |
| 18 | df-nel 3038 | . . . . . . . 8 ⊢ (0 ∉ Odd ↔ ¬ 0 ∈ Odd ) | |
| 19 | pm2.21 123 | . . . . . . . 8 ⊢ (¬ 0 ∈ Odd → (0 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))) | |
| 20 | 18, 19 | sylbi 217 | . . . . . . 7 ⊢ (0 ∉ Odd → (0 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))) |
| 21 | 17, 20 | ax-mp 5 | . . . . . 6 ⊢ (0 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)) |
| 22 | 16, 21 | biimtrdi 253 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))) |
| 23 | 15, 22 | jaoi 857 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))) |
| 24 | 3, 23 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → 0 ≤ ((𝑁 − 1) / 2)) |
| 26 | elnn0z 12606 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ0 ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 2))) | |
| 27 | 2, 25, 26 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℕcn 12245 2c2 12300 ℕ0cn0 12506 ℤcz 12593 Odd codd 47606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-even 47607 df-odd 47608 |
| This theorem is referenced by: nn0onn0exALTV 47680 |
| Copyright terms: Public domain | W3C validator |