Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0oALTV Structured version   Visualization version   GIF version

Theorem nn0oALTV 45148
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
nn0oALTV ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0)

Proof of Theorem nn0oALTV
StepHypRef Expression
1 oddm1div2z 45086 . . 3 (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ)
21adantl 482 . 2 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℤ)
3 elnn0 12235 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 nnm1ge0 12388 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
5 nnre 11980 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
6 peano2rem 11288 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
75, 6syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
8 2re 12047 . . . . . . . . 9 2 ∈ ℝ
98a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ)
10 2pos 12076 . . . . . . . . 9 0 < 2
1110a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 2)
12 ge0div 11842 . . . . . . . 8 (((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 2)))
137, 9, 11, 12syl3anc 1370 . . . . . . 7 (𝑁 ∈ ℕ → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 2)))
144, 13mpbid 231 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ ((𝑁 − 1) / 2))
1514a1d 25 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)))
16 eleq1 2826 . . . . . 6 (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd ))
17 0noddALTV 45141 . . . . . . 7 0 ∉ Odd
18 df-nel 3050 . . . . . . . 8 (0 ∉ Odd ↔ ¬ 0 ∈ Odd )
19 pm2.21 123 . . . . . . . 8 (¬ 0 ∈ Odd → (0 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)))
2018, 19sylbi 216 . . . . . . 7 (0 ∉ Odd → (0 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)))
2117, 20ax-mp 5 . . . . . 6 (0 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2))
2216, 21syl6bi 252 . . . . 5 (𝑁 = 0 → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)))
2315, 22jaoi 854 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)))
243, 23sylbi 216 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → 0 ≤ ((𝑁 − 1) / 2)))
2524imp 407 . 2 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → 0 ≤ ((𝑁 − 1) / 2))
26 elnn0z 12332 . 2 (((𝑁 − 1) / 2) ∈ ℕ0 ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 2)))
272, 25, 26sylanbrc 583 1 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wnel 3049   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319   Odd codd 45077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-even 45078  df-odd 45079
This theorem is referenced by:  nn0onn0exALTV  45151
  Copyright terms: Public domain W3C validator