MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ge0div Structured version   Visualization version   GIF version

Theorem nn0ge0div 12459
Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
nn0ge0div ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))

Proof of Theorem nn0ge0div
StepHypRef Expression
1 nn0ge0 12328 . . 3 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
21adantr 481 . 2 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ 𝐾)
3 elnnz 12399 . . . 4 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
4 nn0re 12312 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
54adantr 481 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐾 ∈ ℝ)
6 zre 12393 . . . . . 6 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
76ad2antrl 725 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐿 ∈ ℝ)
8 simprr 770 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 0 < 𝐿)
95, 7, 83jca 1127 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿))
103, 9sylan2b 594 . . 3 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿))
11 ge0div 11912 . . 3 ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿)))
1210, 11syl 17 . 2 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿)))
132, 12mpbid 231 1 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2105   class class class wbr 5085  (class class class)co 7313  cr 10940  0cc0 10941   < clt 11079  cle 11080   / cdiv 11702  cn 12043  0cn0 12303  cz 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-n0 12304  df-z 12390
This theorem is referenced by:  fldivnn0  13612  divfl0  13614  faclimlem3  33815  faclim  33816  iprodfac  33817
  Copyright terms: Public domain W3C validator