Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hial2eq Structured version   Visualization version   GIF version

Theorem hial2eq 28539
 Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hial2eq ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem hial2eq
StepHypRef Expression
1 hvsubcl 28450 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
2 oveq2 6932 . . . . . 6 (𝑥 = (𝐴 𝐵) → (𝐴 ·ih 𝑥) = (𝐴 ·ih (𝐴 𝐵)))
3 oveq2 6932 . . . . . 6 (𝑥 = (𝐴 𝐵) → (𝐵 ·ih 𝑥) = (𝐵 ·ih (𝐴 𝐵)))
42, 3eqeq12d 2793 . . . . 5 (𝑥 = (𝐴 𝐵) → ((𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
54rspcv 3507 . . . 4 ((𝐴 𝐵) ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) → (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
61, 5syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) → (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
7 hi2eq 28538 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))
86, 7sylibd 231 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) → 𝐴 = 𝐵))
9 oveq1 6931 . . 3 (𝐴 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))
109ralrimivw 3149 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))
118, 10impbid1 217 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  ∀wral 3090  (class class class)co 6924   ℋchba 28352   ·ih csp 28355   −ℎ cmv 28358 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-hfvadd 28433  ax-hvcom 28434  ax-hvass 28435  ax-hv0cl 28436  ax-hvaddid 28437  ax-hfvmul 28438  ax-hvmulid 28439  ax-hvdistr2 28442  ax-hvmul0 28443  ax-hfi 28512  ax-his2 28516  ax-his3 28517  ax-his4 28518 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-ltxr 10418  df-sub 10610  df-neg 10611  df-hvsub 28404 This theorem is referenced by:  hial2eq2  28540  hoeq1  29265  hoeq2  29266  unoplin  29355  hmoplin  29377  pjss2coi  29599  pj3cor1i  29644
 Copyright terms: Public domain W3C validator