HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hial2eq Structured version   Visualization version   GIF version

Theorem hial2eq 31086
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hial2eq ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem hial2eq
StepHypRef Expression
1 hvsubcl 30997 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
2 oveq2 7354 . . . . . 6 (𝑥 = (𝐴 𝐵) → (𝐴 ·ih 𝑥) = (𝐴 ·ih (𝐴 𝐵)))
3 oveq2 7354 . . . . . 6 (𝑥 = (𝐴 𝐵) → (𝐵 ·ih 𝑥) = (𝐵 ·ih (𝐴 𝐵)))
42, 3eqeq12d 2747 . . . . 5 (𝑥 = (𝐴 𝐵) → ((𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
54rspcv 3568 . . . 4 ((𝐴 𝐵) ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) → (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
61, 5syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) → (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
7 hi2eq 31085 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))
86, 7sylibd 239 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) → 𝐴 = 𝐵))
9 oveq1 7353 . . 3 (𝐴 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))
109ralrimivw 3128 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))
118, 10impbid1 225 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  (class class class)co 7346  chba 30899   ·ih csp 30902   cmv 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-hvsub 30951
This theorem is referenced by:  hial2eq2  31087  hoeq1  31810  hoeq2  31811  unoplin  31900  hmoplin  31922  pjss2coi  32144  pj3cor1i  32189
  Copyright terms: Public domain W3C validator