![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjadj | Structured version Visualization version GIF version |
Description: Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjadj | ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adj2 31962 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝑦))) | |
2 | dmadjrn 31923 | . . . . . 6 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ dom adjℎ) | |
3 | adj1 31961 | . . . . . 6 ⊢ (((adjℎ‘𝑇) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘𝑇)‘𝑦)) = (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦)) | |
4 | 2, 3 | syl3an1 1162 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘𝑇)‘𝑦)) = (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦)) |
5 | 1, 4 | eqtr2d 2775 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
6 | 5 | 3expib 1121 | . . 3 ⊢ (𝑇 ∈ dom adjℎ → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦))) |
7 | 6 | ralrimivv 3197 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
8 | dmadjrn 31923 | . . . 4 ⊢ ((adjℎ‘𝑇) ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) ∈ dom adjℎ) | |
9 | dmadjop 31916 | . . . 4 ⊢ ((adjℎ‘(adjℎ‘𝑇)) ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)): ℋ⟶ ℋ) | |
10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)): ℋ⟶ ℋ) |
11 | dmadjop 31916 | . . 3 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
12 | hoeq1 31858 | . . 3 ⊢ (((adjℎ‘(adjℎ‘𝑇)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (adjℎ‘(adjℎ‘𝑇)) = 𝑇)) | |
13 | 10, 11, 12 | syl2anc 584 | . 2 ⊢ (𝑇 ∈ dom adjℎ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (adjℎ‘(adjℎ‘𝑇)) = 𝑇)) |
14 | 7, 13 | mpbid 232 | 1 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 dom cdm 5688 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℋchba 30947 ·ih csp 30950 adjℎcado 30983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-hilex 31027 ax-hfvadd 31028 ax-hvcom 31029 ax-hvass 31030 ax-hv0cl 31031 ax-hvaddid 31032 ax-hfvmul 31033 ax-hvmulid 31034 ax-hvdistr2 31037 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-cj 15134 df-re 15135 df-im 15136 df-hvsub 30999 df-adjh 31877 |
This theorem is referenced by: adjbd1o 32113 adjsslnop 32115 nmopadji 32118 adjeq0 32119 nmopcoadji 32129 nmopcoadj2i 32130 |
Copyright terms: Public domain | W3C validator |