HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadj Structured version   Visualization version   GIF version

Theorem adjadj 29708
Description: Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadj (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)

Proof of Theorem adjadj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 adj2 29706 . . . . 5 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
2 dmadjrn 29667 . . . . . 6 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
3 adj1 29705 . . . . . 6 (((adj𝑇) ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adj𝑇)‘𝑦)) = (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦))
42, 3syl3an1 1160 . . . . 5 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adj𝑇)‘𝑦)) = (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦))
51, 4eqtr2d 2860 . . . 4 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
653expib 1119 . . 3 (𝑇 ∈ dom adj → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦)))
76ralrimivv 3184 . 2 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
8 dmadjrn 29667 . . . 4 ((adj𝑇) ∈ dom adj → (adj‘(adj𝑇)) ∈ dom adj)
9 dmadjop 29660 . . . 4 ((adj‘(adj𝑇)) ∈ dom adj → (adj‘(adj𝑇)): ℋ⟶ ℋ)
102, 8, 93syl 18 . . 3 (𝑇 ∈ dom adj → (adj‘(adj𝑇)): ℋ⟶ ℋ)
11 dmadjop 29660 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
12 hoeq1 29602 . . 3 (((adj‘(adj𝑇)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (adj‘(adj𝑇)) = 𝑇))
1310, 11, 12syl2anc 587 . 2 (𝑇 ∈ dom adj → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adj‘(adj𝑇))‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (adj‘(adj𝑇)) = 𝑇))
147, 13mpbid 235 1 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115  wral 3132  dom cdm 5536  wf 6332  cfv 6336  (class class class)co 7138  chba 28691   ·ih csp 28694  adjcado 28727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-hilex 28771  ax-hfvadd 28772  ax-hvcom 28773  ax-hvass 28774  ax-hv0cl 28775  ax-hvaddid 28776  ax-hfvmul 28777  ax-hvmulid 28778  ax-hvdistr2 28781  ax-hvmul0 28782  ax-hfi 28851  ax-his1 28854  ax-his2 28855  ax-his3 28856  ax-his4 28857
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-2 11686  df-cj 14447  df-re 14448  df-im 14449  df-hvsub 28743  df-adjh 29621
This theorem is referenced by:  adjbd1o  29857  adjsslnop  29859  nmopadji  29862  adjeq0  29863  nmopcoadji  29873  nmopcoadj2i  29874
  Copyright terms: Public domain W3C validator