![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjadj | Structured version Visualization version GIF version |
Description: Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjadj | ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adj2 29133 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝑦))) | |
2 | dmadjrn 29094 | . . . . . 6 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ dom adjℎ) | |
3 | adj1 29132 | . . . . . 6 ⊢ (((adjℎ‘𝑇) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘𝑇)‘𝑦)) = (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦)) | |
4 | 2, 3 | syl3an1 1166 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘𝑇)‘𝑦)) = (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦)) |
5 | 1, 4 | eqtr2d 2806 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
6 | 5 | 3expib 1116 | . . 3 ⊢ (𝑇 ∈ dom adjℎ → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦))) |
7 | 6 | ralrimivv 3119 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
8 | dmadjrn 29094 | . . . 4 ⊢ ((adjℎ‘𝑇) ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) ∈ dom adjℎ) | |
9 | dmadjop 29087 | . . . 4 ⊢ ((adjℎ‘(adjℎ‘𝑇)) ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)): ℋ⟶ ℋ) | |
10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)): ℋ⟶ ℋ) |
11 | dmadjop 29087 | . . 3 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
12 | hoeq1 29029 | . . 3 ⊢ (((adjℎ‘(adjℎ‘𝑇)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (adjℎ‘(adjℎ‘𝑇)) = 𝑇)) | |
13 | 10, 11, 12 | syl2anc 573 | . 2 ⊢ (𝑇 ∈ dom adjℎ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((adjℎ‘(adjℎ‘𝑇))‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (adjℎ‘(adjℎ‘𝑇)) = 𝑇)) |
14 | 7, 13 | mpbid 222 | 1 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℋchil 28116 ·ih csp 28119 adjℎcado 28152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-hilex 28196 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvdistr2 28206 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-2 11281 df-cj 14047 df-re 14048 df-im 14049 df-hvsub 28168 df-adjh 29048 |
This theorem is referenced by: adjbd1o 29284 adjsslnop 29286 nmopadji 29289 adjeq0 29290 nmopcoadji 29300 nmopcoadj2i 29301 |
Copyright terms: Public domain | W3C validator |