Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprellsp Structured version   Visualization version   GIF version

Theorem prjsprellsp 40371
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjsprellsp ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsprellsp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ibar 528 . . . 4 ((𝑋𝐵𝑌𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
21bicomd 222 . . 3 ((𝑋𝐵𝑌𝐵) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
32adantl 481 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
4 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
5 prjspertr.b . . . 4 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 prjspertr.s . . . 4 𝑆 = (Scalar‘𝑉)
7 prjspertr.x . . . 4 · = ( ·𝑠𝑉)
8 prjspertr.k . . . 4 𝐾 = (Base‘𝑆)
9 eqid 2738 . . . 4 (0g𝑆) = (0g𝑆)
104, 5, 6, 7, 8, 9prjspreln0 40369 . . 3 (𝑉 ∈ LVec → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
1110adantr 480 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
12 eqid 2738 . . 3 (Base‘𝑉) = (Base‘𝑉)
13 prjsprellsp.n . . 3 𝑁 = (LSpan‘𝑉)
14 simpl 482 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑉 ∈ LVec)
15 eldifi 4057 . . . . 5 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
1615, 5eleq2s 2857 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
1716ad2antrl 724 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑉))
18 eldifi 4057 . . . . 5 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
1918, 5eleq2s 2857 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
2019ad2antll 725 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑉))
2112, 6, 8, 9, 7, 13, 14, 17, 20lspsneq 20299 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
223, 11, 213bitr4d 310 1 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  {csn 4558   class class class wbr 5070  {copab 5132  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator