![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprellsp | Structured version Visualization version GIF version |
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} |
prjspertr.b | β’ π΅ = ((Baseβπ) β {(0gβπ)}) |
prjspertr.s | β’ π = (Scalarβπ) |
prjspertr.x | β’ Β· = ( Β·π βπ) |
prjspertr.k | β’ πΎ = (Baseβπ) |
prjsprellsp.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
prjsprellsp | β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β (πβ{π}) = (πβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 529 | . . . 4 β’ ((π β π΅ β§ π β π΅) β (βπ β (πΎ β {(0gβπ)})π = (π Β· π) β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) | |
2 | 1 | bicomd 222 | . . 3 β’ ((π β π΅ β§ π β π΅) β (((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
3 | 2 | adantl 482 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
4 | prjsprel.1 | . . . 4 β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} | |
5 | prjspertr.b | . . . 4 β’ π΅ = ((Baseβπ) β {(0gβπ)}) | |
6 | prjspertr.s | . . . 4 β’ π = (Scalarβπ) | |
7 | prjspertr.x | . . . 4 β’ Β· = ( Β·π βπ) | |
8 | prjspertr.k | . . . 4 β’ πΎ = (Baseβπ) | |
9 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
10 | 4, 5, 6, 7, 8, 9 | prjspreln0 41347 | . . 3 β’ (π β LVec β (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) |
11 | 10 | adantr 481 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) |
12 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
13 | prjsprellsp.n | . . 3 β’ π = (LSpanβπ) | |
14 | simpl 483 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β LVec) | |
15 | eldifi 4125 | . . . . 5 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
16 | 15, 5 | eleq2s 2851 | . . . 4 β’ (π β π΅ β π β (Baseβπ)) |
17 | 16 | ad2antrl 726 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β (Baseβπ)) |
18 | eldifi 4125 | . . . . 5 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
19 | 18, 5 | eleq2s 2851 | . . . 4 β’ (π β π΅ β π β (Baseβπ)) |
20 | 19 | ad2antll 727 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β (Baseβπ)) |
21 | 12, 6, 8, 9, 7, 13, 14, 17, 20 | lspsneq 20727 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β ((πβ{π}) = (πβ{π}) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
22 | 3, 11, 21 | 3bitr4d 310 | 1 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β (πβ{π}) = (πβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β cdif 3944 {csn 4627 class class class wbr 5147 {copab 5209 βcfv 6540 (class class class)co 7405 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 LSpanclspn 20574 LVecclvec 20705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-drng 20309 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lvec 20706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |