Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprellsp Structured version   Visualization version   GIF version

Theorem prjsprellsp 39692
 Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjsprellsp ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsprellsp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ibar 532 . . . 4 ((𝑋𝐵𝑌𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
21bicomd 226 . . 3 ((𝑋𝐵𝑌𝐵) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
32adantl 485 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
4 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
5 prjspertr.b . . . 4 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 prjspertr.s . . . 4 𝑆 = (Scalar‘𝑉)
7 prjspertr.x . . . 4 · = ( ·𝑠𝑉)
8 prjspertr.k . . . 4 𝐾 = (Base‘𝑆)
9 eqid 2798 . . . 4 (0g𝑆) = (0g𝑆)
104, 5, 6, 7, 8, 9prjspreln0 39690 . . 3 (𝑉 ∈ LVec → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
1110adantr 484 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
12 eqid 2798 . . 3 (Base‘𝑉) = (Base‘𝑉)
13 prjsprellsp.n . . 3 𝑁 = (LSpan‘𝑉)
14 simpl 486 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑉 ∈ LVec)
15 eldifi 4056 . . . . 5 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
1615, 5eleq2s 2908 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
1716ad2antrl 727 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑉))
18 eldifi 4056 . . . . 5 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
1918, 5eleq2s 2908 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
2019ad2antll 728 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑉))
2112, 6, 8, 9, 7, 13, 14, 17, 20lspsneq 19905 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
223, 11, 213bitr4d 314 1 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ∖ cdif 3879  {csn 4527   class class class wbr 5033  {copab 5095  ‘cfv 6329  (class class class)co 7142  Basecbs 16492  Scalarcsca 16577   ·𝑠 cvsca 16578  0gc0g 16722  LSpanclspn 19754  LVecclvec 19885 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-tpos 7890  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16495  df-slot 16496  df-base 16498  df-sets 16499  df-ress 16500  df-plusg 16587  df-mulr 16588  df-0g 16724  df-mgm 17861  df-sgrp 17910  df-mnd 17921  df-grp 18115  df-minusg 18116  df-sbg 18117  df-mgp 19251  df-ur 19263  df-ring 19310  df-oppr 19387  df-dvdsr 19405  df-unit 19406  df-invr 19436  df-drng 19515  df-lmod 19647  df-lss 19715  df-lsp 19755  df-lvec 19886 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator