![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprellsp | Structured version Visualization version GIF version |
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} |
prjspertr.b | β’ π΅ = ((Baseβπ) β {(0gβπ)}) |
prjspertr.s | β’ π = (Scalarβπ) |
prjspertr.x | β’ Β· = ( Β·π βπ) |
prjspertr.k | β’ πΎ = (Baseβπ) |
prjsprellsp.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
prjsprellsp | β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β (πβ{π}) = (πβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . . 4 β’ ((π β π΅ β§ π β π΅) β (βπ β (πΎ β {(0gβπ)})π = (π Β· π) β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) | |
2 | 1 | bicomd 222 | . . 3 β’ ((π β π΅ β§ π β π΅) β (((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
3 | 2 | adantl 481 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
4 | prjsprel.1 | . . . 4 β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} | |
5 | prjspertr.b | . . . 4 β’ π΅ = ((Baseβπ) β {(0gβπ)}) | |
6 | prjspertr.s | . . . 4 β’ π = (Scalarβπ) | |
7 | prjspertr.x | . . . 4 β’ Β· = ( Β·π βπ) | |
8 | prjspertr.k | . . . 4 β’ πΎ = (Baseβπ) | |
9 | eqid 2727 | . . . 4 β’ (0gβπ) = (0gβπ) | |
10 | 4, 5, 6, 7, 8, 9 | prjspreln0 41945 | . . 3 β’ (π β LVec β (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) |
11 | 10 | adantr 480 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) |
12 | eqid 2727 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
13 | prjsprellsp.n | . . 3 β’ π = (LSpanβπ) | |
14 | simpl 482 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β LVec) | |
15 | eldifi 4122 | . . . . 5 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
16 | 15, 5 | eleq2s 2846 | . . . 4 β’ (π β π΅ β π β (Baseβπ)) |
17 | 16 | ad2antrl 727 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β (Baseβπ)) |
18 | eldifi 4122 | . . . . 5 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
19 | 18, 5 | eleq2s 2846 | . . . 4 β’ (π β π΅ β π β (Baseβπ)) |
20 | 19 | ad2antll 728 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β (Baseβπ)) |
21 | 12, 6, 8, 9, 7, 13, 14, 17, 20 | lspsneq 20992 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β ((πβ{π}) = (πβ{π}) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
22 | 3, 11, 21 | 3bitr4d 311 | 1 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β (πβ{π}) = (πβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwrex 3065 β cdif 3941 {csn 4624 class class class wbr 5142 {copab 5204 βcfv 6542 (class class class)co 7414 Basecbs 17165 Scalarcsca 17221 Β·π cvsca 17222 0gc0g 17406 LSpanclspn 20837 LVecclvec 20969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-0g 17408 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-grp 18878 df-minusg 18879 df-sbg 18880 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20255 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-drng 20608 df-lmod 20727 df-lss 20798 df-lsp 20838 df-lvec 20970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |