| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprellsp | Structured version Visualization version GIF version | ||
| Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
| prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
| prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
| prjsprellsp.n | ⊢ 𝑁 = (LSpan‘𝑉) |
| Ref | Expression |
|---|---|
| prjsprellsp | ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
| 4 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 5 | prjspertr.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
| 6 | prjspertr.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑉) | |
| 7 | prjspertr.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 8 | prjspertr.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 9 | eqid 2736 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 10 | 4, 5, 6, 7, 8, 9 | prjspreln0 42624 | . . 3 ⊢ (𝑉 ∈ LVec → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) |
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) |
| 12 | eqid 2736 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 13 | prjsprellsp.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑉) | |
| 14 | simpl 482 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑉 ∈ LVec) | |
| 15 | eldifi 4130 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
| 16 | 15, 5 | eleq2s 2858 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 17 | 16 | ad2antrl 728 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑉)) |
| 18 | eldifi 4130 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑌 ∈ (Base‘𝑉)) | |
| 19 | 18, 5 | eleq2s 2858 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝑉)) |
| 20 | 19 | ad2antll 729 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑉)) |
| 21 | 12, 6, 8, 9, 7, 13, 14, 17, 20 | lspsneq 21125 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
| 22 | 3, 11, 21 | 3bitr4d 311 | 1 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∖ cdif 3947 {csn 4625 class class class wbr 5142 {copab 5204 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17485 LSpanclspn 20970 LVecclvec 21102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |