Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprellsp | Structured version Visualization version GIF version |
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
prjsprellsp.n | ⊢ 𝑁 = (LSpan‘𝑉) |
Ref | Expression |
---|---|
prjsprellsp | ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) | |
2 | 1 | bicomd 222 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
4 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
5 | prjspertr.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
6 | prjspertr.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑉) | |
7 | prjspertr.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑉) | |
8 | prjspertr.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
9 | eqid 2738 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
10 | 4, 5, 6, 7, 8, 9 | prjspreln0 40369 | . . 3 ⊢ (𝑉 ∈ LVec → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) |
11 | 10 | adantr 480 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) |
12 | eqid 2738 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
13 | prjsprellsp.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑉) | |
14 | simpl 482 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑉 ∈ LVec) | |
15 | eldifi 4057 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
16 | 15, 5 | eleq2s 2857 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
17 | 16 | ad2antrl 724 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑉)) |
18 | eldifi 4057 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑌 ∈ (Base‘𝑉)) | |
19 | 18, 5 | eleq2s 2857 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝑉)) |
20 | 19 | ad2antll 725 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑉)) |
21 | 12, 6, 8, 9, 7, 13, 14, 17, 20 | lspsneq 20299 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
22 | 3, 11, 21 | 3bitr4d 310 | 1 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 {csn 4558 class class class wbr 5070 {copab 5132 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LSpanclspn 20148 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |