Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprellsp Structured version   Visualization version   GIF version

Theorem prjsprellsp 39310
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjsprellsp ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsprellsp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ibar 531 . . . 4 ((𝑋𝐵𝑌𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
21bicomd 225 . . 3 ((𝑋𝐵𝑌𝐵) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
32adantl 484 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
4 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
5 prjspertr.b . . . 4 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 prjspertr.s . . . 4 𝑆 = (Scalar‘𝑉)
7 prjspertr.x . . . 4 · = ( ·𝑠𝑉)
8 prjspertr.k . . . 4 𝐾 = (Base‘𝑆)
9 eqid 2821 . . . 4 (0g𝑆) = (0g𝑆)
104, 5, 6, 7, 8, 9prjspreln0 39308 . . 3 (𝑉 ∈ LVec → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
1110adantr 483 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
12 eqid 2821 . . 3 (Base‘𝑉) = (Base‘𝑉)
13 prjsprellsp.n . . 3 𝑁 = (LSpan‘𝑉)
14 simpl 485 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑉 ∈ LVec)
15 eldifi 4103 . . . . 5 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
1615, 5eleq2s 2931 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
1716ad2antrl 726 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑉))
18 eldifi 4103 . . . . 5 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
1918, 5eleq2s 2931 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
2019ad2antll 727 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑉))
2112, 6, 8, 9, 7, 13, 14, 17, 20lspsneq 19894 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
223, 11, 213bitr4d 313 1 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  cdif 3933  {csn 4567   class class class wbr 5066  {copab 5128  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  LSpanclspn 19743  LVecclvec 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator