Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprellsp Structured version   Visualization version   GIF version

Theorem prjsprellsp 42626
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjsprellsp ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsprellsp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ibar 528 . . . 4 ((𝑋𝐵𝑌𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
21bicomd 223 . . 3 ((𝑋𝐵𝑌𝐵) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
32adantl 481 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
4 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
5 prjspertr.b . . . 4 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 prjspertr.s . . . 4 𝑆 = (Scalar‘𝑉)
7 prjspertr.x . . . 4 · = ( ·𝑠𝑉)
8 prjspertr.k . . . 4 𝐾 = (Base‘𝑆)
9 eqid 2736 . . . 4 (0g𝑆) = (0g𝑆)
104, 5, 6, 7, 8, 9prjspreln0 42624 . . 3 (𝑉 ∈ LVec → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
1110adantr 480 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
12 eqid 2736 . . 3 (Base‘𝑉) = (Base‘𝑉)
13 prjsprellsp.n . . 3 𝑁 = (LSpan‘𝑉)
14 simpl 482 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑉 ∈ LVec)
15 eldifi 4130 . . . . 5 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
1615, 5eleq2s 2858 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
1716ad2antrl 728 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑉))
18 eldifi 4130 . . . . 5 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
1918, 5eleq2s 2858 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
2019ad2antll 729 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑉))
2112, 6, 8, 9, 7, 13, 14, 17, 20lspsneq 21125 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
223, 11, 213bitr4d 311 1 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3069  cdif 3947  {csn 4625   class class class wbr 5142  {copab 5204  cfv 6560  (class class class)co 7432  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17485  LSpanclspn 20970  LVecclvec 21102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-sbg 18957  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator