Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprellsp Structured version   Visualization version   GIF version

Theorem prjsprellsp 42559
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjsprellsp ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsprellsp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ibar 528 . . . 4 ((𝑋𝐵𝑌𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
21bicomd 223 . . 3 ((𝑋𝐵𝑌𝐵) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
32adantl 481 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
4 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
5 prjspertr.b . . . 4 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 prjspertr.s . . . 4 𝑆 = (Scalar‘𝑉)
7 prjspertr.x . . . 4 · = ( ·𝑠𝑉)
8 prjspertr.k . . . 4 𝐾 = (Base‘𝑆)
9 eqid 2734 . . . 4 (0g𝑆) = (0g𝑆)
104, 5, 6, 7, 8, 9prjspreln0 42557 . . 3 (𝑉 ∈ LVec → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
1110adantr 480 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌))))
12 eqid 2734 . . 3 (Base‘𝑉) = (Base‘𝑉)
13 prjsprellsp.n . . 3 𝑁 = (LSpan‘𝑉)
14 simpl 482 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑉 ∈ LVec)
15 eldifi 4104 . . . . 5 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
1615, 5eleq2s 2851 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
1716ad2antrl 728 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑉))
18 eldifi 4104 . . . . 5 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
1918, 5eleq2s 2851 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
2019ad2antll 729 . . 3 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑉))
2112, 6, 8, 9, 7, 13, 14, 17, 20lspsneq 21068 . 2 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g𝑆)})𝑋 = (𝑚 · 𝑌)))
223, 11, 213bitr4d 311 1 ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  cdif 3921  {csn 4599   class class class wbr 5116  {copab 5178  cfv 6527  (class class class)co 7399  Basecbs 17213  Scalarcsca 17259   ·𝑠 cvsca 17260  0gc0g 17438  LSpanclspn 20913  LVecclvec 21045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-tpos 8219  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-0g 17440  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18904  df-minusg 18905  df-sbg 18906  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20282  df-dvdsr 20302  df-unit 20303  df-invr 20333  df-drng 20676  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator