| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprellsp | Structured version Visualization version GIF version | ||
| Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
| prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
| prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
| prjsprellsp.n | ⊢ 𝑁 = (LSpan‘𝑉) |
| Ref | Expression |
|---|---|
| prjsprellsp | ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
| 4 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 5 | prjspertr.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
| 6 | prjspertr.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑉) | |
| 7 | prjspertr.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 8 | prjspertr.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 9 | eqid 2734 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 10 | 4, 5, 6, 7, 8, 9 | prjspreln0 42557 | . . 3 ⊢ (𝑉 ∈ LVec → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) |
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌)))) |
| 12 | eqid 2734 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 13 | prjsprellsp.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑉) | |
| 14 | simpl 482 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑉 ∈ LVec) | |
| 15 | eldifi 4104 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
| 16 | 15, 5 | eleq2s 2851 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 17 | 16 | ad2antrl 728 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑉)) |
| 18 | eldifi 4104 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑌 ∈ (Base‘𝑉)) | |
| 19 | 18, 5 | eleq2s 2851 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝑉)) |
| 20 | 19 | ad2antll 729 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑉)) |
| 21 | 12, 6, 8, 9, 7, 13, 14, 17, 20 | lspsneq 21068 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})𝑋 = (𝑚 · 𝑌))) |
| 22 | 3, 11, 21 | 3bitr4d 311 | 1 ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∖ cdif 3921 {csn 4599 class class class wbr 5116 {copab 5178 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Scalarcsca 17259 ·𝑠 cvsca 17260 0gc0g 17438 LSpanclspn 20913 LVecclvec 21045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18904 df-minusg 18905 df-sbg 18906 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-drng 20676 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |