![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprellsp | Structured version Visualization version GIF version |
Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} |
prjspertr.b | β’ π΅ = ((Baseβπ) β {(0gβπ)}) |
prjspertr.s | β’ π = (Scalarβπ) |
prjspertr.x | β’ Β· = ( Β·π βπ) |
prjspertr.k | β’ πΎ = (Baseβπ) |
prjsprellsp.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
prjsprellsp | β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β (πβ{π}) = (πβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 527 | . . . 4 β’ ((π β π΅ β§ π β π΅) β (βπ β (πΎ β {(0gβπ)})π = (π Β· π) β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) | |
2 | 1 | bicomd 222 | . . 3 β’ ((π β π΅ β§ π β π΅) β (((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
3 | 2 | adantl 480 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
4 | prjsprel.1 | . . . 4 β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} | |
5 | prjspertr.b | . . . 4 β’ π΅ = ((Baseβπ) β {(0gβπ)}) | |
6 | prjspertr.s | . . . 4 β’ π = (Scalarβπ) | |
7 | prjspertr.x | . . . 4 β’ Β· = ( Β·π βπ) | |
8 | prjspertr.k | . . . 4 β’ πΎ = (Baseβπ) | |
9 | eqid 2725 | . . . 4 β’ (0gβπ) = (0gβπ) | |
10 | 4, 5, 6, 7, 8, 9 | prjspreln0 42097 | . . 3 β’ (π β LVec β (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) |
11 | 10 | adantr 479 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β (πΎ β {(0gβπ)})π = (π Β· π)))) |
12 | eqid 2725 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
13 | prjsprellsp.n | . . 3 β’ π = (LSpanβπ) | |
14 | simpl 481 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β LVec) | |
15 | eldifi 4119 | . . . . 5 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
16 | 15, 5 | eleq2s 2843 | . . . 4 β’ (π β π΅ β π β (Baseβπ)) |
17 | 16 | ad2antrl 726 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β (Baseβπ)) |
18 | eldifi 4119 | . . . . 5 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
19 | 18, 5 | eleq2s 2843 | . . . 4 β’ (π β π΅ β π β (Baseβπ)) |
20 | 19 | ad2antll 727 | . . 3 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β π β (Baseβπ)) |
21 | 12, 6, 8, 9, 7, 13, 14, 17, 20 | lspsneq 21012 | . 2 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β ((πβ{π}) = (πβ{π}) β βπ β (πΎ β {(0gβπ)})π = (π Β· π))) |
22 | 3, 11, 21 | 3bitr4d 310 | 1 β’ ((π β LVec β§ (π β π΅ β§ π β π΅)) β (π βΌ π β (πβ{π}) = (πβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3060 β cdif 3937 {csn 4624 class class class wbr 5143 {copab 5205 βcfv 6542 (class class class)co 7415 Basecbs 17177 Scalarcsca 17233 Β·π cvsca 17234 0gc0g 17418 LSpanclspn 20857 LVecclvec 20989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |